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Preface

Photonics deals with controlled production, evolution, and detection of (mainly
coherent) light (photons) within the ‘optical’ region of the electromagnetic spectrum
(vacuum wavelength (Ag) from 50 nm to 500 pm or photon energies (hw) from 25 to
0.002 eV). With the advent of the laser non-linear properties of optical media have
become essential.

This draft should be considered as just the germ of a more complete introduction
to photonics.

Recommended Literature: (Loudon, 2000; Mandel and Wolf, 1995;
Yariv, 1997; Vogel et al., 2001; Shen, 1984; Bachor, 1998; Saleh and Teich, 1991)
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Chapter 1

Fundamentals

1.1 Classical Electrodynamics

1.1.1 MAXWELL Equations

The classical electromagnetic field E(x,t), B(x,t) is defined (implicitly) by the
force density
(3%, 1) = pres (%, ) BX, ) & 9oy (5,1) X B(x, ) (1)
that it exerts on the carriers of test 4-current densities <c Prest (X5 1) Trest (X, t)) ; see,
e.g., Sections 3.3.3 and 4.1.3 of (Liicke, rel). The field generated by a 4-current
density (c p(x,1), 3(x, t)) fulfilling the continuity equation

p(x,t) + divy(x,t) =0 (1.2)
has to obey MAXWELL’s equations’
curl B(x,t) = po (60 %E(X, t) +](X,t)> : (1.3)
curl E(x,t) = —%B(x, t),

1
diVE(X7t) = _IO(X7t)7
€0
divB(x,t) = 0
(we use SI units; see Appendix A.3.3 of (Liicke, edyn)). More precisely, in the

classical case, it is the physical solution

E(x,t) = —grad @, (x,t) — %Aret(x, t), B(x,t) =curl A(x,t)

Draft, November 5, 2011
Note that g ey = ¢~ 2, where

As
=~ L1072 =
€ ~ 8,85 -10 N

and ¢ denotes the velocity of light in vacuum (= 3 - 108 m/s).

9



10 CHAPTER 1. FUNDAMENTALS

given by the retarded electromagnetic Potentials

ICEEE

Prop(x,t) = — AV
t(X ) €0 47T|X_X/’l (1'4)
J <X/,t _ |X;X ‘>
A (x,t) = dViyr .
t(x ) ILLO/ 47T|X—X/|
In typical applications the 4-current density is approximated as
p(x,t) = pex(x,t) —divP(x,t),
(1.5)

0
J(Xa t) = Jex(xv t) + a P(Xv t) )
with some known 4-current density (c Pex (X, 1), Jose (X, t)) of excess charges and some

generalized polarization P(x,t).

Remarks:

1. For every choice of pex(X,t), 7., (X, t) obeying the continuity equation there is?

a time-dependent vector field P(x,t) fulfilling (1.5).

2. Under suitable conditions we have

0 0 1

— t) = — Pa(x,t) + — rot 1), 1.

5 P(x,t) 5 Pa(x,t) + o rot M(x,t) (1.6)
(see, e.g., Chapter 4 of (Liicke, edyn)), where Pu(x,t) = D(x,t) — eo E(x, )
denotes the electric dipole density and M(x,t) = B(x,t) — po H(x,t) the

magnetic dipole density.?

Then MAXWELL’s equation become equivalent to

0
curl Bx,t) = po; (B0, +Pt)) + o dex(, ), (L7)

curl E(x,t) = —%B(x, t), (1.8)
div <€0E(X, t) + P(x, t)) = pex(x,t), (1.9)
divB(x,t) = 0. (1.10)

Draft, November 5, 2011
2See (Liicke, 1995), in this connection.
3Contrary to a wrong argument given in (Landau und Lifschitz, 1967, §60) the interpretation
of M(x,t) does not imply £ Pu(x,t) ~ 0 for j..(x,t) = 0. For higher dipole moments see
(Bloembergen, 1996b, p. 63).




1.1. CLASSICAL ELECTRODYNAMICS 11

1.1.2 Energy and Energy Flux of the Field

For arbitrary (sufficiently well-behaved) regions G we have

to 7(x,t) - E(x,t) dVy

g
= /g ( Ban) (VexBe)  —comBxb)- %E(x, ) v

J/

N

—B(x,t)-( Vx x E(x,1) )=V (B(x,t) xB(x,t))
———

& B(r,t)

(1?8)
== /g (eo po B(x, 1) - %E(x, t) +B(x,1) %B(x, t)+ Vi - (E(x, t) x B(x, t))) dV.

This implies

0 1

5 (0 IBx 0 + - (B

E(x,t) x B(x,1)
Ho

(1.11)

N | —

= —3(x,t) - E(x,t) = V-

and therefore, by GAUSS’ theorem, the POYNTING theorem *

d 1 1
B (60 ’E(X7 t)‘2 + 1 |B(X7 t)‘2> dVX
0

dt Jg 2
E(x.t) x B(x.t
——/ﬂwamwﬂb— o) xBx.1) g
g G Ho

(1.12)

Remark: If (1.6) holds then (1.12) and GAUSS’s theorem, because of

div (E(x, £) x M(x, t)) = M(xt)-curl E(x,t) — B(x, ) - curl M(x, t)
(1.8) —M(x,t)- %B(x,t) —E(x,t) - curl M(x,t),
also imply

0 0
E(x,t) - — D(x,t) + H(x,t) == B(x,t) | dV&x
/g ( o > (1.13)

ot
_ / Jex(,8) - BG6 ) AV — | (E(xt) x Hix, 1)) - dSx,
g oG

where

Do) & B )+ Plxr) Hxr) & PO MY,
0

Draft, November 5, 2011
4See also (Kinsler et al., 2009).




12 CHAPTER 1. FUNDAMENTALS

Since, by (1.1), /](X, t) - E(x,t)dVy is to be interpreted as the rate of the work
g
done by the electromagnetic field on the charges, (1.12) suggests the interpretation

engergy current density of the
plain electromagnetic field

S(x, t) % iE(x, 1) x B(x, 1) = {

(1.14)

of the (free) POYNTING vector S(x,t) and

of 1 1
Ho(x,t) & 5 <60 IE(x,t)]> + — |B(x,t)]2)
Ho

energy density of the
plain electromagnetic field .

(1.15)

Assuming (1.5) and defining®

def | work done by the field
Ut,t) = { on the non-excess charges .

we get

0 0
— = E C = . 1.1

Remark: Recall that the power performed by a force F(¢) on a masspoint with
trajectory x(t) is F(t) - x(t) . Correspondingly, the power performed by the angular
momentum M(¢) on a rigid body rotating with circular angular velocity w(t) is
M - w(t). Likewise, the power performed by an electrical field E(t) on an electrical

dipole P(t) is E(t) - P(t) — not % (E(t) - P(t)).

Therefore, (1.11) and (1.5) imply

0 E(x,t) x B(x,t)
E(’Ho(x, t) + U(x, t)) = =7 (X, 1) - E(x,t) — V- m .

Consequently:

Ju =0 = %/(Ho(x,t)+z/1(x,t))dvx:o. (1.17)

1.1.3 Frequency Analysis

Using the FOURIER transform

fxw) < \/%—W/f(x, t) et dt

Draft, November 5, 2011

5Concerning the classical field energy see (Landau und Lifschitz, 1967, Chapt. IX, §61).




1.2. QUANTIZED ELECTROMAGNETIC RADIATION 13

resp.
Py def

f(x,w) = \/%/f(x,t) et dt

we may write (1.7)—(1.10) in the equivalent form

icurlﬁ(x,w) = —iw(@B(xw) + Plxw)) +Fulxw), (118)

el E(x,w) = +iwB(x,w), (1.19)

div (o B(x,w) + P(x,w)) = +hex(x,). (1.20)
divB(x,w) = 0. (1.21)

Remark: If the FOURIER-integrals do not exist in the ordinary sense — as, e.g., for
monochromatic waves — they have to be interpreted in the distributional sense; see
Exercise 33 of (Liicke, qft) or Section 3.1.1 of (Liicke, ftm).

The continuity equation for pey, J., implies
~ ..
Pex(X,w) = — div e, (x,w) Vw #0 (1.22)
w

and, consequently, equivalence of the equations (1.18)—(1.21) to

—~

ﬁ(x, w) = ,icurlE(x,w) Vw#0

W
and

curl <cur1 E(X,cu)) = <g>2 <E(X, w) + 1 P(x, w)) + 1 W 1o Jor (X, W) (1.23)

C €0
for w#0.
Of course, the physical fields have to be real. For the electric field, e.g., this
means .
E(x.1) = (E(x1) .
ie.

E(x,—w) = (B(x w)>* . (1.24)

Therefore, it is sufficient to determine E (x,w) for w > 0.

1.2 Quantized Electromagnetic Radiation

Of course, the classical electromagnetic theory should be quantized.® A rigorous
relativistic quantum theory describing the interaction of radiation with matter (non-
perturbative QED) does not yet exist. Fortunately, as we will see, for many important
applications the classical macroscopic MAXWELL theory supplies sufficient informa-
tion concerning the influence of linear optical devices on photons.”

Draft, November 5, 2011
SFor a detailed discussion why a semiclassical theory (treating only ‘particles’ quantum me-
chanically) plus vacuum fluctuations is insufficient see, e.g., (Scully and Zubairy, 1999).
"The notion ‘photon’ was introduced in (Lewis, 1926). See (Lamb, Jr., 1995) for a historical
review.
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1.2.1 Quantum Aspects of Light

Nowadays (almost) monochromatic electromagnetic radiation of angular frequency
w is considered to be composed of quanta (photons) having (total) energy hw each
(and zero rest mass). This leads to additional information on optical processes.

To give an example, consider second harmonic generation which has to be con-
sidered as formation of quanta having energy 2 hw out of pairs of quanta having en-
ergy hw each.® Reversibility of quantum dynamics predicts also the reverse process,
called spontaneous down conversion: instantaneous formation of pairs of photons
out of single photons. Contrary to the quantized theory” classical optics does not
give any hint at (essentially) simultaneous creation of both partners of each pair, as
confirmed by experiment.!?

More generally, quantum optics describes multi-photon processes mediated by
matter. These processes are called nonlinear if what happens to a photon depends
in an essential way on the presence and properties of other optical photons.'* This
kind of nonlinearity is essential for optical implementations of modern quantum
information processing.

1.2.2 Field Operators

In the so-called radiation gauge a classical electromagnetic vacuum field E(x,t),
B(x,t) (of sufficiently rapid decrease at spatial infinity) may be represented in the
form

B(x,t) = curl A(x,t), E(x,t)= —%A(X, t) (1.25)

with the vector potential

/
A ) = /Mdvx, (1.26)

T Ar |x — x|
fulfilling the COULOMB condition
div A(x,t) =0, (1.27)

Remark: Equations (1.25) follow from (1.26) by curlcurl = graddiv — A and the

POI1SSON equation Ay = —47d (x — x'); see, e.g., equations 4.87 and 4.63 of

|x — x’
(Liicke, ein). The CouLoMB condition follows for (1.26) by divcurl = 0; see, e.g.,
Equation 4.89 of (Liicke, ein).

Draft, November 5, 2011

8Momentum conservation holds for the momenta inside the medium, corresponding to phase
(-velocity) matching from the classical point of view.

9See (Mandel and Wolf, 1995, Sect. 22.4.2).

108ee (Mandel and Wolf, 1995, Sect. 22.4.7).

' This type of nonlinearity does not contradict the fundamental linearity of quantum mechanical
time evolution!
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In this gauge the free MAXWELL equations are equivalent to the vectorial wave
equation

2
OAx,6)=0, O A- (% %) . (1.28)

If no boundary conditions are imposed, every (sufficiently well-behaved, real) solu-
tion of (1.28) fulfilling the COULOMB condition is of the form

*

A(x, 1) & AD (x, 1) + (AP (x,1)) (1.29)

with a complex vector potential '*

AW (x,1) = (20) 32/ piohic / (Z e, (k) aj(k)> e—“clklt—k'x)%, (1.30)

where the a;(k) are (sufficiently well-behaved) complex-valued functions and the
€;(k) are vector-valued functions forming a

k
right handed orthonormal basis {el(k), € (k), m} of R?

for every k # 0.

In the HEISENBERG picture the observables E(x,t) and B(x,t) should obey the
same linear relations as their classical counter parts E(x, ¢) and B(x, ¢). This can be
achieved replacing the complex-valued functions a;(k) by suitable operator-valued
functions a;(k) :

2
N def — ~ —ile —k-x de
AH)(X; t) = (2m) 3/2\/ prohe / (E €;(k) aj(k)) e (elklt K )ma (1.31)
j=1

BHx,¢t) ¥ cul A(x, 1) (1.32)

2
_ . ekt dVi
= (2m) 7/ ohe /zk x €;(k) (k) e clkli=kx) 7
j=1 V2 |k

EMx, 1) © _%Aw(x,t) (1.33)

2
: ; dVi
= (2m) %%/ pohe / ic k| €;(k) a;(k) e clklt=kx) ’
; Y V21K

Draft, November 5, 2011

12The factor 1/4/2|k| under the integral will be necessary for LORENTZ covariance of the quan-
tized field tensor. The factor v/pohc is chosen in view of (1.57).
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Apt) & AW+ (A¥xD) (1.34)
B(x,t) B(+)(x,t)+<B(+)(x,t)>T, (1.35)
B(x,t) E(+)(x,t)+<E(+)(x,t)>T. (1.36)

If the operators (k) , (a;(k))" fulfill the canonical commutation relations'?

09,000 =0, a0, (a,0)) | =sipak—1) (3

on a suitable dense subspace Dy, of the HILBERT space Hgeq , containing a cyclic
normalized vacuum state vector ) characterized by'*

a;(k)Q=0, (1.38)
then the observables B(t(x,t), E(H)(x, ¢) fulfill all reasonable physical postulates.
Remarks:
1. These properties fix the quantized theory up to unitary equivalence (see Sect.

4.1.1 of (Liicke, ¢ft) and (Fredenhagen, 2001, Sect. I11.4)). This also implies, by
the way, that all irreducible realizations of (1.37)/(1.38) are unitarily equivalent.

2. Actually, the (a; (k))T have to be considered as operator-valued distributions
(generalized functions):

;
/a}(k) ©* (k) dk C (/ a; (k) p(k) dk) Ve S(RY).
See, e.g., Section 2.1.3 of (Liicke, ¢ft) for details.

Especially, the field observables fulfill the quantized free MAXWELL equations:

curl B(x,t) = MOEO%E(X,@, (1.39)
curl B(x,1) = —%ﬁ(x,t}, (1.40)
divE(x,t) = 0, (1.41)
divB(x,t) = 0. (1.42)

Draft, November 5, 2011

13We simply write z for z1, z € C, as long as this does not cause any confusion. For a possible
realization of (1.37)/(1.38) see A.3.

Because of  (1.38) the a;(k) are called annthilation  operators (see
(Mizrahi and Dodonov, 2002) in this connection). Here, ‘cyclic’ means that the linear span
of all vectors of the form

/f(k17~-~7kn) (&]d(kl))T'” (djn(kl))Tdel "'den Q, ne Ly s J1s---5Jn € {172} )

2 for n=0

with square integrable f’s is dense in Hgelq -
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However, the canonical commutation relations also imply

(AMH(x,, 1), <(Aj2)(+)(X27t2)>T:|_

9__d
8m]11 8zJ12

Ax

=ipohc| 0, — A (x1 = %o,y — 1)

1

(in the distributional sense), where

e . _ ' - dWi
AP (x, 1) & —i(2n) S/e“"xe‘“'kt —2|1:|

Outline of proof for (1.43): Since

2
<L
=
—
=~
oY
)
<L,
»N
—
=
'
—
>
—
=~
|
=
'\
-

(1.31) implies
|:(Aj1)(+)(xl7 t), ((Ajz)(+)<X2’ t2)) T}

) _

) - | a1
_ 3 J1 J N, —i(clk|(t1—t2)—k-(x1—x%2)) k
= (2m) uoﬁc/jg_l e (k) e (k) e 1—t2 1—x2 R I

—5 _ kI1pI2
—I172 |k|2

(1.43) implies

A

{Aﬁ (x1, 1), A%(xs, tQ)}

a a9

=ipuphc ((5j1j2 — %) Ag(x1 — X2, t1 — t2),

X1

where!®

Ag(x, 1) o A((]+)(x, t) — A(+)(—x, —t).

0

Draft, November 5, 2011

- —i(2m)~® / § (KR — k- k) e (K%t kx) quq di0 .
k0>0

17

(1.43)

(1.44)

(1.45)

(1.46)

5Note that Ag(x,t), being an anti-symmetric LORENTZ invariant distribution, vanishes for

c|t| > |x|. However, the operator on the r.h.s of (1.45) is non-local.
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Therefore, we have
<Q ‘ E(x.t) Bx, ) Q> £0 (1.47)
in spite of 16
<Q ) E(X,t)§2> ~0.
Since E(x,t) is the observable of the electric field,'” field, (1.47) shows the presence
of vacuum fluctuations'® (quantum noise). (1.45) also implies'”

A (x,,1), AR(xo,t)] = 0,
Al (xy, 1), B2 (x0,t)] = 0 (1.48)
B (x1,1), BE(xe )| = 0,
Ei(xt), ER(xe,t)] = 0
and
[Ajl(xl, £), B (x,, t)] = LR (x) — %) (1.49)
[B(xl,t) , E”(xg,t)] = i—ej, X Vg, i(x1 —X2),
where L
. 1172 ‘
512 (x) & (27) 73 / (@m - W)elk'x dVi (1.50)
fulfills

3
2. /  (x —x) F/(X)dVwey = Fi(x)
J:3'=1
div F(x)

AV (1.51
47 |x — x| (1.51)

o F(x) + grad/
for sufficiently well-behaved F(x) .

Draft, November 5, 2011

16 Also for JOHNSON noise, the electric current in a simple circuit resulting from fluctuating
electromagnetic forces due to thermal motion of the charges, one has zero mean but nonzero mean
square. (2 being an eigenvector of the (non-hermitean!) operator E(*)(x,¢) does not mean that
the positive-frequency part of the electric field has a definite value in the vacuum state.

e. <<I> ‘ BE(x,t) tI>> is the expectation value for the electric field in the quantum state @, for
all ® € Dy .

8 These provide, e.g., a simple explanation for the spontaneous transitions of exited atoms
into lower energy states; see (Milonni, 1994, Chapter 3) for some further effects. Also spontaneous

down-conversion can be explained as a result of vacuum fluctuations.
9The first three equations hold because of Ag(x,0) = 0. The last one follows from

9 2
<8t> AO(X7t)‘t:0 =0.
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Remark: Note that F (x) is just the transversal part of
1F(x’ divF(x’
F(x) = curl/ curl F(x) dVx — grad/ AivF() dVix

47 |x — X/ 47 |x — X/

(see, e.g., Section 4.5.3 of (Liicke, ein)).

Let us finally note that one may prove relativistic covariance of the theory in the
sense that there is a unitary representation”’ U(a, A) of the restricted POINCARE
group P! fulfilling

A

Ula,N)2=0
and ,
U™ a, N)F" (Ax +a)U(a, A) = Y A A F(x)
a,=0

(see, e.g., Chapter 4 of (Liicke, ¢ft) for details), where?!

0 —1E'Y(x,t) —L£2(x,1) —L1 E3(x,t)
def +lE1( ) ) 0 —B?’(X,t) +B2(X7 )
(F“"(:L')) = < . .
+ I E%(x,t)  +B3(x,1) 0 —Bl(x,t)
+L1Ex,t) —Bix,t) +B'(x,1) 0
and
xdéf(mo,...,xg), 20 ey

This together with the above commutation relations also shows that the field mea-
surements at space-like separated space-time points are compatible:

P (2), FH’V’(Q;')] —0 forelt—#|>x—x| (EINSTEIN causality).

1.2.3 Field Modes

The free Hamiltonian Hgeq , characterized as the self-adjoint operator fulfilling the
commutation relation

A _ 95w
h[HﬁeldaA (th)]_ 8tA (x,1) (1.52)

Draft, November 5, 2011

20This means that the U (a, A) are unitary operators fulfilling

U(ahAl)U(ag,Ag) = U(a1 + Alag,AlAg) V(a17A1)7 (a2A2) S ’Pl .

. 1
2INote that F'* is the quantized version of — H"" | as introduced in 1.1.1.
Ho
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on Dy C Dy and

Hsa Q2 =0,
is given by*
o def 2
fooa = [ helk a0 dvic, 202 3" @,00) 4,00, (159

Jj=1

where (k) is interpreted as the observable (in the HEISENBERG picture) for the
k-space density of the number of photons:

expectation value for the
/ (® | n(k) @) dVix = ¢ number of photons in the state ® (1.54)
© with momentum p =hk € hO.

This is consistent in the sense that, for every open subset O of the k-space, the

t-independent observable / n(k) dVi commutes®® with ﬁﬁeld , has only nonnegative

(@]

24

integer eigenvalues,”* and

Poﬁi/hkﬁ&yﬂ@ (1.55)

is the momentum observable? as uniquely characterized (on Dy) by

[Bo, Aixn)] = - Vidix 1) (1.56)

and A
P(]Q = O

According to (1.54),

N [ Ak) dli

has to be interpreted as the observable for the total number of photons and the
subspace Hggd of n-photon state vectors coincides with the closed linear span of the

Draft, November 5, 2011
2Note that (1.37) implies [ﬁ(k’),&j(k)} = —a,;(k)0(k — k’). This, actually, is the heuristic
motivation for (1.37). See (Green, 1953), in this connection.
2Note that (1.37) implies {(aj(k))*aj(k), (aj,(k'))*aj/(k’)] ~0.
2Since (1.37) implies -

(a;1)) a3 (0)) (a5, 0<0)) "+ (a5, (0))
= (&jl (kl))T L. (djn (kn))T <((&](k))T&](k)) + Z 6jju6(k — ky)> ,

(recall the derivation of (A.26)).
25This observable is t-independent in the HEISENBERG picture, since it commutes with Hgelq -
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set of all vectors of the form?°
T ~ T
/f ki,... .k (% (kl)) (ajn(kl)) AV, ... dVi, Q

with square integrable f’s.
As already indicated in Footnote 12, the normalization factor on the r.h.s. of
(1.31) has been chosen to yield*”

- 1 A - 1 . .
Hgeq = —/ <602E(X, t)-E(x,t): + —:B(x,t) - B(x,t) :) dV,

2 Ho

) (1.57)
APy = — /:E(x,t) x B(x,t): dVy,

Ho

where : : means normal ordering, i.e. in all products the creation operators
T
d}(k) o <dj(k)> have to be placed — irrespective of the initial ordering — to the

left of the annihilation operators a;(k) .

A dense subset of Hézl)d is given by the linear span of the set of all (i.g. not yet

normalized) vectors of the form
al---al Q

with modes ay, .. .a,, i.e. operators of the form?®

22:/ ( )) AV, (1.58)
~ 1.

la,,a]] = (1.59)

v

Here

<Q | A (x,t)al, Q> = % Vi /Z e;(k) fi(k) e (clklt—kx) Vi

2k

@]

60)

Draft, November 5, 2011
26Recall Footnote 14.
2TRecall Footnote 1. Using the commutation relations for the components of A(x7 t), E(x, t)

and B(x,t) one can verify (1.52) and (1.56) also directly for (1.57). For the connection be-

tween the energy current density and the momentum density of the electromagnetic field see

(Landau und Lifschitz, 1967, Footnote 1 on Page 284).

ZEquation (1.59) is equivalent to

2 4 )
Z/yfg(k)| dVi = 1.
j=1
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can be interpreted as wave function of the single photon® in the (pure) state = aj Q.
Since

<Q

for every o) € Hgle)ld there is exactly one mode a with

oM =at Q.

éTQ> - <Q Y
<Q

= [d ) éT]— )
modes a, ¢ are said to be orthogonal if

a;(k) Y aj(k) f(k) AV Q > = <

=1

> lay k)] (k) dVi Q >

j=1

= (k/ ,

Motivated by

(o

[a,¢']_=0.

A family {a, }, . of pairwise orthogonal modes is said to be mawzimal, if {a}, Q : v € N}

is a maximal orthonormal system (MONS) of Hi(ile)ld. For every maximal family
{ay}, ey of pairwise orthogonal modes we have

a;(k) = > (2 |a;x) ) 0)a,;
v=1
since
al(k)Q = i al, Q) (af, Q| al(k) Q
v=1
- i(m\aj(k)am})*am (1.61)
v=1

and modes a are uniquely characterized by the corresponding 1-photon state vectors
a' Q. Therefore, the field operators a;(k) may be replaced by the countable set
of ordinary operators @, and every normalized 1-photon state vector () may be
written in the form

”:imiﬂ, i!w:l,

where the complex coefficients A are the probability amplitudes for the ‘modes’
a, , i.e.

Draft, November 5, 2011

21f 23:1 €;(k) fi(k) o €1(k) + i €a(k) resp. 23:1 €;(k) f7(k)  €1(k) — i €2(k) the photon is
said to have positive resp. negative helicity.
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For every 1y € N

2
Al = (@ 2| w®)

is the probability for finding a photon, randomly chosen from an ensem-
ble (characterized by) () in the mode af if an ideal test for being in
just one one the modes ay, s, . . . is performed.*’

Obviously, for v € N
ooodef g oo
N, = a, 4,

is the observable for the number of photons in mode a, and for the observable N
for the total number of photons we get

n
N = E N, .
v=1

Warning: According to the simple theory of photodetection considered
in 7.2.2 the states corresponding to elements of Héﬁ%d are, in fact, n-
fold localized: The maximal number of photodetectors which may fire
simultaneously when testing such a state is n .

Typical for nonlinear quantum optics:
Hw—dQ v 4= b bo—éddQ vn.

Such ‘nonlinear’ behavior is needed, e.g., for optical implementations of the CNOT
gate acting according to

HoH — H®H,
H®V — H®V,
VeV — VooH,
VoH — V®V.

Finally, let us derive some useful relations for modes a :

A simple consequence of the commutation relations (1.37) and (1.59) is
(ala)a=a(a'a—1), (a'a)a’ =a' (a'a+1) (1.62)
which, by iteration, implies

(i) @) = @)" (da—n) . (@) (@) = @) (@la +n)
Draft, November 5, 2011
30Typical for quantum mechanics is, that such tests are considered even if

v =4t a#a, YveN.
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for all n € N. This, in turn, implies®!
(a)"a" = (@la) (ala—1) - (ala— (n—1)) ¥neN (1.63)

and
(a'a) (a")"Q=mn(a")"Q VneN. (1.64)

1.2.4 ‘Classical’ States of Light

They are important,® not only because they are one of the quantum mechanical states
whose properties most closely resemble those of a classical electromagnetic wave, but
also because a single-mode laser operated well above threshold generates a coherent

state excitation...
(Loudon, 2000, p. 190)

Radiation off Classical Currents

The expectation values for the (no longer free) electromagnetic field associated with a
classical 4-current (c p(x,t), 7(x, t)> in the vacuum should fulfill the corresponding
MAXWELL equations:

curl (B(x,1)) = pio (60 % (E(x, 1)) + g(x,t)) , (1.65)
curl (E(x,t)) = —% (B(x,1)) , (1.66)
div (E(x,t)) = ép(x, t), (1.67)
div (B(x,t)) = 0. (1.68)

In the interaction picture the expectation values (for pure states) are given by??
Bx,1) = (!
©c) = (v

and, therefore, the equations (1.65)—(1.68) are guaranteed by the ¢-dependence

Blx.1) U})
(E(X7 t) — grad /M de/) ‘I’1> (1.69)

47e|x — x|

d A
e W= (1) W (1.70)

of the normalized state vector Wi, where
Hin(t) = — / g(x,t) - Ax, 1) dVk. (1.71)

Draft, November 5, 2011
31Compare with (A.31).
32G8ee also (Klauder, 2010).
33Note that, in the presence of charges, ]i)(x7 t) is only the transversal part of the observable

for the field strength in the interaction picture (see also Footnote 2 of Chapter 7).
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Outline of proof for (1.65)—(1.68): While (1.68) resp. (1.67) follows directly from
(1.69) and (1.42) resp. (1.41), (1.66) follows according to

curl (E(x,t = curl ( ! ’E x,t) Ul
®ec0) 5 el (W Be00 v
0

= —B x,t) Ul
(1.40) ot BV t>

5o, B (i [Bow) - (w

I
t

1

= Huc(t). B )| \11,{> .

= 0
(1.71y,(1.48,
(1.65), finally, follows from

curl (B(x,t
——cul (B(x.1))

(139) <
9

T B (v} ’E(x,t) ) - <\If{

1

5 [gint(t)a E(X> t)} B ‘I’£>

i / A / -
= x,t) - |Ap(x',t), E(x,t dVy
(1.71) h/J( ) { o(x, 1), B( )L
1 div 3(x")
= - 7(x) + rad/ide
(1.49),(1.51) 63( )+

4 eg |x — x|

o ! 4 p(x',t)
cont. eq. EJ(X’t) ot grad/ T W

dmeo [x — x| "
It
gg g . } V<0 (1.72)
then the retarded solution of (1.70), characterized by
U =Q Vt<O,
=
Pl = A0 A At“f—%p/tfim@ﬁdﬂ (1.73)

(for sufficiently well-behaved p, 7), where

el [ d . )
() & 5/ —[AnA] arec.

Remark: We assume, without proof, that this solution is unique. For the expectation

values this is a simple consequence of POYNTING’s theorem; see, e.g., Section 5.1.2
of (Liicke, edyn).

Draft, November 5, 2011

34For more complicated interactions the DYSON series (see A.4) has to be evaluated.
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That this is a solution can be shown by application of the BAKER-HAUSDORFF
formula *

[A, A, B],} - [B,[A,f}],] =0 = AYB = o"3AB- A B (1.74)

Outline of proof for ¢ (1.73) = (1.70):

d i
— t Q
dt ) A A
eft+tAate— At ] ~
= 1 At (]
Atgr}m At € ) )
eAt+At*Ate_%[At+At7At,]7 1 .
= lim e
(1.74) At—=+0 At
0 —A ~ ~ -1 At tyAt
— lim we—%[AHMAt]_JFe sAcandd .y g
At—+0 At At
_ i ag / A,
(1773) <_ﬁ Hmt - A (t)) (& Q. I

Since Co }
: /_ ()t = i) - (ay0)". (1.75)
where
o) S [ ()" a1 v
j=1,2
and

i (k dﬁfi pohe Kk ! 9 _3 N emikx Q1 +iclklt” g4/
gkt =3 Weﬂ ) 2m)72 [ g(x,t)e e t,

Draft, November 5, 2011

35For operators in finite dimensional vector spaces (1.74) may be proved as follows: Since

MBe=2 A and e2daa B (adga DY [C,D]_) fulfill the same first order differential equation and

initial condition (for A = 0), the CAMPBELL-HAUSDORFF formula

holds for arbitrary A, B. Therefore, also

) def eA(A+B)+§ [A.B]

fi(A
and o
f2()\) déf e)\AeAB

fulfill the same first order differential equation and initial condition (for A = 0) and hence fi=1f
if the Lh.s. of (1.74) holds. For details concerning the case of unbounded operators A, B see
(Frohlich, 1977).
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(113) can be written in the form
= e e( )T 1.76
\I;i A(t) J(t) 10, Q . ( . )

Proof of (1.75): Using the general definition

G 1) % (27)3 / G(x, e *x v,

we get
Hoe = — [ 3.(=k,t) Ak, t)dV
15y, [ deen - Ak an
and
A Hohe 7 —tclklt P T ticlklt
Alk,t - €;(k)a;(k)e +€;(—k)(a;(-k)) e )
( )<1.31),(1.34) 2 K| j§2(a( ) a; (k) i(=k)(@;(=k)) )
Since

this implies (1.75). g

Remarks:

1. The state of the electromagnetic field depends only on the time-
dependent vector field j(x,t). This is no surprise since the latter
— together with the continuity equation and (1.72) — fixes the
time-dependent scalar field p(x,t) .

2. Note that for time intervals without interaction®® the interaction
picture coincides with the free HEISENBERG picture.

3. This is why a,(t) does not change during time intervals over which
J(x,t) vanishes.

Single Modes

Obviously, the state (1.76) generated from the vacuum by an exterior current is a
coherent state,®” i.e. a pure state corresponding to a state vector y of the form

XX Ds(a), aeC, (1.77)
Draft, November 5, 2011
36For the present case this means that 3(x,t) = 0 over the corresponding time intervals.
37These states are called coherent since their analogs for the harmonic oscillator correspond to
wave packets which do not spread but — apart form shifts of the expectation values — have the
same probability distributions for position and momentum as the ground state, for all times; see
A.2.3.
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where a is a mode and
Dala) & evd'=e"a yq e C. (1.78)

Obviously, the operators Dy (o) are unitary. Using the BAKER-HAUSDORFF formula
(1.74) we easily see that

Da(a) = etalol® gmata gadl — o—plel® gadl ) v e C. (1.79)
The latter especially implies
def —La)? aat
Xala) = e 2 e Q)
S—
normalizing factor (180)

~

= D&(OJ)Q VaeC.

Now, the relation

[&, eadT] = e (1.81)
corresponding to the formal rule
A B x1 = [A f(B) = [A, B f(B), (1.82)
(compare Exercise £29a) of (Liicke, eine)) shows that
axala) =ays(a) YaeC (1.83)
More generally we have
4(K) Da(@) Q= |a;(K), Daa)] ©
1S © a;(k),a"]_Da(a)Q
and
@001 = (2] [40,47_ )
- <Q a;(k) at Q> ,
hence
AM(x, 1) ya(a) = <Q ‘ A, 1) adt Q> xal@).  (1.84)
= complex vector poten;al of the expectation value
of the electromagnetic field in the state xa(a)
= axwave function of a photon in the state at Q
Thus:

In a coherent state y the (vector-valued) ‘wave function’ of every
photon coincides (up to normalization) with the complex vector

Aéﬂ (x,1) X> :

potential < X
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Remarks:

1. For (Fock-)states of the form

p) — L AR
n!
the phase of the single-photon mode a is irrelevant. But it is crucial
for coherent superpositions of such states with different values of
n.

2. The unitary ﬁd(a) a displacement operator in the sence that?®

(G, Da(a)]- A3 aDa(a) , [&TaDa(@)]dEhaDa(a)- (1.85)

In coherent states yz(«) the so-called quadrature components

_odef AT g a—al

T y DPa = .
¢ \/§ ¢ 1\/§
of an arbitrary mode a have the same uncertainties as in the vacuum state and their
product takes the minimum value allowed by the uncertainty relations®’
1

[ajdapd]—‘ = 5 .

1
Axy Apy > 5

Outline of proof: With

we have

(Taa) = <Xé(0<) i"&Xé(O‘)>
({xel@)]axe(@)) + {axe(e)
A

(A+27)

Xa(a)>)

and

[\
P
—

>
I
~
(V]
~—
I
s

ve(o) | (@) + (@) + 24 a+ 1) xe(@))
= M)+ X420 A +1
A+ +1,

Draft, November 5, 2011

3 Note that (1.85) implies

Qv =al = a (Dd(ﬁ)qQ = (a+B) (D&(ﬂ)\ll) :
Actually:

(«B=8) . (a+B) Va,BeC.

N

Da(a) Da(B) a7 °

39Giehe Footnote 14 of Appendix A.
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hence

(Aza)* = ((@a)') = ((2a))”

Similarly we get

(Apa)’ =1/2.

In this sense coherent states are ‘as classical as possible’.*’

Remarks:

1. For every t € R and arbitrary real-valued f!(x), f'(x), f1(x) €
S(R3) there is a mode a with

/E(x, t) - f(x)dVi ox @5 .

2. If @ is a mode then so is €% a for every p € R.

3. For every mode a we have p; = 2_;5 .

Let a be a mode and denote by H; the smallest closed subspace of Hgaq that
contains €2 and is invariant under a'. Then*!

> @) (@) af = Py, (1.86)
v=0
holds as a consequence of
()"l (@")" Q) = v, (1.87)

Proof of (1.87): The statement follows by successive application of

@@y = (vl @] e)

= /] ~t u—lQ v N, Ve Heng .
(1.82),(1.59) M< | (a") > IS € Hpeld i

Draft, November 5, 2011
“OStates with Az < 1/v/2 or Aps < 1/v/2 are called squeezed states (sce
(Scully and Zubairy, 1999, Sections 2.5-2.8) for a discussion of these states).
41 As usual, Py, denotes the orthogonal projection onto H .
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(1.86) implies*?

D&(I’ + Zy) Q><D&(Z‘ + Zy) Q‘ dx dy = pq.[& > (188)

-/

1 A
X:—/<Dd(m—|—iy)9|X>D&(x+iy)§2dxdy Vx € Hs.

™

et

Proof of (1.88): According to (1.86) and (1.87) we have to show
<(dT)VQ‘ (/ |Da(w + iy) ) (Dala + iy) €| dxdy) (a*)“9> =716y
This, however, may be shown as follows:
<(aT 0 (/ ’f)a(x—i-iy) Q><l§&(x+iy)9’ dxdy) (aT)“Q>
(@) 2| Dalw+iy) Q) (Dalw +iy) 2 | (a)" @) dzdy

o letiyl? <(dT)V Q| platiyal Q>< (z+iy)a® () | (a T) >dx dy

’

/
fermmrira e
_ /e—\my\z y Ll oWl (e )@ o).
/
J

v !
v/, u'=0
(@) @ (@) Q) dedy

(z +iy)” (z —iy)" e~ 17+ dz dy
2m
,r,v+lt+1 677’2 dr/ ei(ufp‘)ap dtp

1 [e%s) 27 )
= 3 / 5(V+u)/2 e—¢ d£/ etr=n)e do
0 0

= Ty, |

Draft, November 5, 2011
42The integral is to be understood in the weak sense:

<><1 (/’D@(Jc—i—iy) Q><D@(Jc+iy)§2’ da:dy) X2>

def/<X1 ’D x+zy)Q> <D@(x+iy)§2’ x2>dxdy VX1, X2 € Hfield -

“3Note that, for every e > 0, already {f)d(a) Q:aeC, o< e} is a complete set of states

since, e.g.,
n d " at
(ah)" Q) = <<) e Q> Vn € Zy
> da oo

Ds (rei“’)Q>dcp VneZy,r>0.

and
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By (1.88), every vector in H; way be written as a continuous superposition of co-

herent states ‘f)a(x +iy) Q> ,z € C. But, of course, this representation is not

unique:*

{‘f)a(x +iy) Q> Lz € (C} is an over-complete subset of H, .
The states Dy () Q and D (o) Q are only approximately orthogonal for large | — f| :

Di(@)Q| Da(@) Q) = el e g
(Dale)@] Da®)2) = @ ity )
— ea*ﬁeﬁaTQ
1.83)

— o s(leP+I8P)+arp (P | Q)
—  s(la?H8?) s (1.89)

Multiple Modes

More generally, let {a,}, .y be a maximal family of pairwise orthogonal modes and,
for n € N, denote by Hs,, .4, the smallest closed subspace of Hgeg that contains €2
and is invariant under di, ...,al . Then

s- lim Py, o= Ty, - (1.90)

n—oo

Now also the vectors

N N
Doy = (P olonl’) oiitonin 0y e N oy,... 0, €C (191)
describe coherent states and have the inner products
min{n,m}
1 2 2 *
(B o | Py, ) = H o~ 5 (lowP+18ul) +as By (1.92)
v=1

Outline of proof for n =m:

e+(‘a1|2+"'+‘ﬂ"|2) <¢O¢1 ~~~~~ QAn ‘ (PBI """ Bn>

= <Q | e ohral  anan oBnal, Q>
N————
—enBn Ganal Q
_ ea;ﬁn<ea;an Q| el pBra] an_jdn—a oBno1d),_y Q>
N——

=Q

' n
= L™
v=1

Draft, November 5, 2011
4 A simple calculation (see (Mandel and Wolf, 1995, Section 11.6.1)) even shows that

/f(x2 + %) (z +iy)" |Da(z + iy) Q> dzdy =0

holds for every function f and every n € N for which the integral exists.
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(1.92) implies

}<d>a1m | @, ,5n>‘ He""” Bl forn/ >n. (1.93)

The corresponding generalization of (1.88) is

™" / ’®a1,.-.,an><q}a1,--.,an’ dzO‘l T d20‘n = THay,an 0 (1'94)

where
A%(x +iy) € dady
and this gives a nice mode expansion:
%0y d%a,
(190) = 1'Hﬁ a — 5 nhalgo |<I)041 ><CI)041 ----- Oén| T e T (195)

This expansion is extremely useful since®”

1K) Py, = |05(K), r] + . ndl]| Py (1.96)

Now let p be some density operator on Ha, 4, . Then, thanks to (1.95), p is

uniquely determined by the matrix elements

_—

f(ala s 7571) déf <(I)a1,...,ozn | ﬁ¢51,...,ﬁ,L> ) n e Na Ay, .. 7671 S C .
Since, by (1.91) ,

P(alv"'aanvﬁla"wﬁn) déf e%zu 1<|au| | )f(a_lu"‘aa_ruﬁla'”aﬁn)

is a convergent power series of the variables aq,...,a,, 51,..., 0, the following
lemma shows that p is already determined by the expectation values*®

(Poyron | PPayan) » MEN, ay,...,0, € C.
Lemma 1.2.1 Let n € N and let P(z,...,29,) be a power series of the complex
variables z1, . .., 29, that converges for all (zy,. .., z2,) € C*" and vanishes if
2y =Znty Vv e{l,...,n}.

Then P is identically zero.

Draft, November 5, 2011
“Recall (1.82) and (1.37).
46Note that o, o, = Pay. 0.0 -
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Outline of proof: Obviously,

. def . . . .
P(Z17~-~722n) = P(Zl *Zzn—'rlw”yzn7zzn+n7zl+Zzn+17---7zn+lzn+n)

is a power series of the complex variables 2, . . ., za, that vanishes on R?” . Therefore,
it vanishes identically.

This suggests that p may be represented in the form

%0y d%a,

:5 =s- lim pn(ala cet ,O./n) ‘(pa17~~-704n><®0417---705n|

n—00 T T

with suitably chosen functions p, (a1, ...,a,). Indeed, careful elaboration on this
idea leads to the following theorem:

Theorem 1.2.2 For every density operator p on Hgeq there is a sequence of func-
tions oy € S (RQN) — see, e.g. Definition 9.1.1 of (Licke, eine) for the Definition
of the SCHWARTZ space S — such that

Tr (ﬁB)
= lim [ on <5R(oz1),%(oz1), . .,ﬂ?(aN),S(aN)> <<I>a17,,,7aN \ B©a17,,,7aN> % . dO‘TN
(1.97)

is uniformly convergent for all B € £ (Hgeaa) with Hé” <1.

Proof: See (Klauder and Sudarshan, 1968, Section 8-4 B). i

Strictly speaking (1.97) is established only for bounded operators B. Typically,
however, this formula will be applied to experimentally realizable p with normally
ordered polynomials (eventually of infinite degree) of radiation field operators substi-
tuted for B. The assertion that such applications are justified is called the optical
equivalence theorem since for coherent states — thanks to (1.96) — the ex-
pectation values of normal ordered products of (positive- and negative-frequency)
radiation field operators coincide with the corresponding products of expectation
values of these operators.*”

Draft, November 5, 2011
47The latter implies the optical equivalence theorem for normally ordered bounded analytic
functions of the a, . Limits of such functions are used in typical applications.




Chapter 2

Linear Optical Media

2.1 General Considerations

In situations of practical interest a given medium never extends over all of R. Con-
sequently, nontrivial boundary conditions have to be taken into account and this
spoils the use of spatial FOURIER techniques. Then, instead of a CAUCHY problem,
one usually considers a scattering problem: For ¢ — oo the electromagnetic field
tends to a prescribed vacuum solution. This together with (1.7)—(1.10) and suitable
constitutive equations determines the field for all times.

Usually, since the evolution of electromagnetic waves inside materials is very delicate,
only very special types of (idealized) media and/or waveforms are discussed in the
literature. This makes it very difficult to get an overview.

In their most general form the constitutive equations for linear media' just specify
P(x,t) as a linear functional of E(x,t) (recall Section 3.1.1) and B(x,t). Of course,
we are not able to establish linear optics in this general form. Rather we will consider
simple models for special situations. However, in order to give at least some feeling
for complications arising in more general situations, we derive FRESNEL’s formulas
BindexFresnel @FRESNEL’s formulas for (isotropic) dispersive media with absorption
(on both sides of the boundary plane) and present the solutions of exponential type
for MAXWELL’s equations in nonisotropic media with absorption and dispersion.

2.1.1 A Simple Model

Let us consider (non-moving) linear optical media inside which the generalized
polarization P(x,t) , and the induced macroscopic current density 3;,4(x, t) are given
via t-dependent tensor fields?

And

Y(x, 1) = ()ij(x, t)) and & (x,t) = (6jk(x,t))

Draft, November 5, 2011
Linearity should be a good approximation for ‘normal’ electromagnetic fields.

3
. c . . <> def j
2We use matrix multiplication: m A = E m’, AP €.
jk=1

35
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P(x,t) = \/E;)_W/;(X,t — ) E(x,t')dt’, (2.1)

S (1) \/_/ ) E(x, #) dt (2.2)

(see Appendix A of (Liicke, ein) for an outline of tensor calculus). Thinking of P
and 7,,4 as (initially*) induced by E leads to the following causality condition:’

?

N(x, 1) =6(x,1) =0 Vi<0. (2.3)

Moreover, the inverse FOURIER transforms X/, (x,w) , and o7, (x,w) — usually called
“material constants” — should be ordinary functions, converging rapidly to 0 for
w — £oo. Then also Y/, (x,t) and 7, (x,t) are ordinary functions which should
decrease exponentially for t — 400 (damping).

Exercise 1 Show that the oscillation x(t), induced by f(¢) according

to
#(t) + 2p () + R (1) = 1(2),
z(t) = f(t) =0 firt<ty,

x(t \/%/ F(t—t) ()t

1
—p* = (w+ip)?
can be analytically continued into an open neighborhood of the closed
upper half plane. Moreover, show that

is of the form

where

r(w) =

1 )
Mt) = — [ r(—w)e™dw
) \/ﬁ/( )
1 ot
— ﬁe Pt sin <t wg—pQ) 6(t)
0o~ P

holds for weak damping, i.e. for 0 < p < wy .

Draft, November 5, 2011
3This means — among other things — that we exclude ferroelectrics, ferromagnets, and nonlocal
effects such as optical rotation in quartz (optical activity, see (Saleh and Teich, 1991, Eq. (6.4~
2))) or anomalous skin effect, here. Media with (spatially) nonlocal response are discussed in
(Agranovich and Ginzburg, 1984).
4Concerning the backreaction of P onto E see, e.g., (Mandel and Wolf, 1995, Sect. 16.3).
5Exact vanishing for ¢ < 0 is not essential but quite convenient and reasonable for macroscopic
considerations.
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2.1.2 Exploiting Homogeneity

Let us assume that the medium is homogeneous, i.e. that

And — <~

) =X(t), o(xt) =6(t).

Then the causality condition (2.3) implies that

k def 1 / “k izt . P
z) = — t) e di eneralized susceptibilit

of 1 ; : w
ok (z) ¥ \/_Q_W/6kl(t) e dt (specific conductivity)

are bounded holomorphic functions on a sufficiently small neighborhood of the closed
upper half plane.

Remark: This together with (2.4), (2.5), and the causality condition allows for the
derivation of dispersion relations (see Sect. 4.1 of (Liicke, [tm) providing valuable
insight into the frequency dependence of the permittivity (see (Mills, 1998, Sect. 2.1)).

The same, consequently, holds for the (relative) permittivity®

A nd

)Y 1+ Y().

Since ¥*, and &%, have to be real-valued, the so-called crossing relations

() = € (=)
N for &(z) > 0 2.4
) = & (e } (2) (2.4)

have to be fulfilled” according to Rule 7 for the FOURIER transform® and the prin-
ciple of analytic continuation. The asymptotic behaviour along the real axis is:”

W) - 1
i “ o for w — £o00. (2.5)
olw) — 0

If (2.1) holds, we may use

e B (x,w) + P(x,w) = ¢ 0 (w) E (x,w) (2.6)
in (1.18) resp. (1.20) and get

—_~ —l W o —~

curl B(x,w) = € (W) E(x,w) + 1o Jox (X, w) (2.7)

C

Draft, November 5, 2011

-1

6The inverse € (z) is called impermeability.

"By definition, the matrix m  results from 1 by complex conjugation of the entries.
8See Appendix.

9Compare Exercise 1 and (Romer, 1994, Sect. 2.8).
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resp.

div (60 5w E(x, w)) = (X, W) | (2.8)

If also ., = Jinq holds with 7,4 given by (2.2), then (2.7) becomes'’

C W €p

curl B (x, w) = _Z;U (?(w) +¢M) E (x,w) . (2.9)

Remark: The material tensors € (w), o (w) enter MAXWELL’s equations
only via the combination

(W) ML)+ ‘L(:;) ,

T
o

usually called complex dielectric ‘constant’ — even though, from
the physical point of view,'! already ¢(w) should be complex-valued.'?
From the purely mathematical point of view, if only ?C(w) is given,
¥/ (w) and of (w) may be considered as real-valued (but not separately

analytic). Similar remarks apply to the complex conductivity

Fo(w) ¥ F(w) —iwe T (W) (: —iwe ?C@J)) .

Exercise 2 Given w € R\ {0} and assuming (1.7)—(2.2) show that

04 %) ~1

=  pex(x,w) =0.
]ex<x7 t) = Jind (X7 t) }

Thanks to (1.19), the radiative Part of B(x,t) as as a function of time is already
fixed by E(x,t) and its first order spatial derivatives at the same position in
space. Therefore:

For radiation fields inside homogeneous linear media it is sufficient to
determine E(x,1).

Draft, November 5, 2011

0Since the 4-current 7%, o b — Jhng creating the electromagnetic wave (see Section 2.1.3) is
not included, (2.9) is — strictly speaking — only relevant for times ¢t with j%.(x,¢') =0 Vit >¢t.

M Compare Exercise 1.

12Thys allowing for a phase difference between E (x,w) and D(x,w).
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In the following we consider only media for which (2.1) holds. Then we have

curl (curl E(x, w)) iwcurl B (x,w)

(139)
UJ2 > o . ~
5w (OB +iwnaxw)
w? R o . ~
5y I Blow) i Tabow),
where
Fer(3%,0) © (6, 0) = Fraa (x,)
Thanks to

V4 X (Vx X E(x, w)) = Vi (Vx . E(x,w)) — AE(x,w),

(2.10) is equivalent to

(Ax + <%>2?C(w)> EV(X, w) = grad <div Ev(x, w)) — LW o Jop (X, W)

Therefore

— 1E |
Bxw) = SWE&W 20
(1.19) tw

39

(2.10)

(2.11)

(2.12)

(2.13)

together with (2.12) implies (2.7). (1.21) is a direct consequence of (2.13) and (2.8),
finally, serves as a definition for p.x respecting the continuity equation. The latter

implies
Pox(X,w) = Pur(,w) + Prna(x,w) for w #0,
where: a(x,w) 2 div (u(x,w)) /().
Fna(x,w) 2 div (? (@) E(x,w)) / (i) .

We conclude:

Solving (1.18)—(1.21) for w # 0 is equivalent to solving

—~

(2.12) and determining B (x,w) by (2.13).

Lemma 2.1.1 Let E(x,t) be a solution of (2.12) for 3. (x,w) = 0 with
supp E(x,?) C Ugr (V4)
for some R > 0. Then E(x,t) =0.

Proof: Use the tube theorem, the edge-of-the-wedge theorem, and (2.5).

(2.14)
(2.15)

(2.16)
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2.1.3 Radiation off a Given Source

In this subsection we consider only isotropic'® homogeneous media, i.e. we assume

<~ Aad <~ Axd

Y =X 1, Fxt) =c(t)]. (2.17)

Then, by (2.8), (2.12) becomes

(Aﬁ(%)i&@) Bx,w) = —— srad jug(x,w) — iw oo (x,0) . (2.18)

€0 €(w)
Defining
B def 1 [ 5.« el Nw)x=x v
ret (X7 w) - _gra’ /pCr(X ,CU) 47'(' 60 EC(Q}) |X o X,| x/
(2.19)
e, ete Nk -
— Ho /(—W)Jcr(x ,w) m x'
where
Nw) ¥ Ve, %(/\/(w)) >0,
and using (2.15) we get
S ﬁcr(xaw)
div Epe(x,w) = ———" 2.20
v e (%, w) o0 co(@) (2.20)

and hence, by (2.14) and (2.16),
Per (X, W)/ €c(w) = pex(X, w)/€(w) .

Therefore Ev(x,w) = E,(x,w) is a solution of (2.18) (for w # 0). By (2.13) this
implies

~ def _ , el 2N (w)|x—x'|
Bret(X7 w) = curl/,uo Jcr(x 7&)) m de/ . (221)
FOURIER transforming (2.19) and (2.21) we get solutions
0
E(x,t) = —grad (x,t) — aA(X,i), B(x,t) = curl A(x, 1) (2.22)

of MAXWELL’s equations (1.7)—(1.10) for'*

t 1
Pex(X, 1) = —/ (— g(t" —t")divE(x,t")dt" ) dt” + pe(x,1),
oo \ V2T

X (2.23)
< / / /
) = = [l =) B(x )t + 3,0
Draft, November 5, 2011
13 All crystals of the cubic system are isotropic. It would be interesting to generalize the results
of this subsection for nonisotropic media.
MNote that (2.23) and the continuity equation for , imply the continuity equation for ., .
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with electromagnetic Potentials ®, A of the form

D t) = Bufet) O e e D
(x,t) = Pra(x,t) = E/ﬂcr(x>w) A eg eo(w) [x — x| x dw,
. 1 efi%(ctf./\/’(w)|xfx’|)
€ > /
A(X7 t) = Aret (Xa t) = E /MO ]cr(x 7(")) A |X — X/| dVe dw .

(2.24)

Using standard techniques one may prove (see (Borchers, 1990) and, for the main
techniques, also Sect. 4.1 of (Liicke, ftm)) that

per(X,1) Jer(x,1) = 0 for ([x[, 1) ¢ [0, R] x [0, 00]
— Bya(x,1) =0 fort¢ [O, ""T_R} .

and, assuming'®

1 .
/ e ™dt=0 Vt<0, (2.25)
€c(w)

(in addition to (2.3)) also

pcr(X, t) > Jcr(X, t) =0 for (|X| ’t) ¢ [O’ R] X [Ov OO]

2.26
— E(x,t)=0 fort¢ [O, ""T_R} . (2:26)

holds. In other words:
The speed of a lightning inside the medium is strictly bounded by c.
All this becomes obvious for constant'® real .. Then we have

gcr(x’,t—% |x—x’])

A |x — x|

por (Xt =2 |x — X|)
(I)re 7t - - y Are 7t =
(1) AT €g € |x — X/ 1(3%:1) = pio

with n = N (w), showing that the speed of light in such a medium is ¢pedium = ¢/7 -
Taken together with the former argument we see that

R > €. constant =— n>1. (2.27)

Remarks:

1. By Lemma 2.1.1, there is at most one retarded solution for given
Per 5 Jer -

2. Therefore we consider the solution (2.22)/(2.24) as the physical one.

3. Then (2.20) implies -

divE (x,w) = 0 (2.28)
outside the (spatial) support of per(x,w) .

Draft, November 5, 2011

15This assumption may presumably be proved using (2.5).
16Gtrictly speaking, this is only compatible with (2.5) ife=p =1and 0 =0.
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2.2 Monochromatic Waves of Exponential Type

2.2.1 Basic Equations

In the following we consider only the case

Jo=0.

Then (2.12) becomes

(Ax + (%)2?6((,0)) E(X,w) = grad (div /E\)/(X, w)) (2.29)

Let us look for monochromatic solutions of exponential type

E(x,o') = Eg(w )exp< Y Ny(w)s- x) V2r (W — w), (2.30)

i.e. for (damped) monochromatic plane waves'’

E(x, 1) = Ey(w) e % (ct-Maw)sx)

?

where
s, E(w) e C?

and s is a (complex) direction, i.c.'®

s-s=1. (2.31)

Then (2.29) holds iff

) Eulw) = (M) Proafe),

def

o (2.32)
where: Pz = z— (s-z)s VzeC?,

Draft, November 5, 2011

"Note that, by (2.31), N(w)s can only be real if (J\fs(w))2 is real. One may show (see
(Mills, 1998, p. 12)) that R (Ns(w)) > 0 = wS(Ns(w)) < 0. Actually, Ns(w) may depend
on the polarization (see 2.2.3).

18We use standard notation:

3
bEN WY, dle; +aPe; +ate; ¥ dle; +a’es +ades, |a| E Va-a>0
j=1
(ater + a?ez 4 ales) x (blei + bZeq + bie3) o (a?6? — a%?) e1 + (a%b" — alb?) ez + (a'd? — a?b') e3.

Note that the symmetric bilinear form a-b is an indefinite inner product on C? and that (s - s) =
0= R(s)-S3(s) =0. Modes with 0 # e -s € i R for some e € R? are called evanescent.

<>
19(2.32) implies (2.8) for pex = ping according to (2.16). Note that, thanks to (2.31), P s is a
i xd nd i xd

projection operator: P s P g = Pg.
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According to (2.13), the corresponding magnetic field is given by

——sx E(x,w) (2.33)

for w # 0, where

Zy f Woc =~ 3771 vacuum impedance .

Even though the object of physical interest is the real field*”

E(x,t) + E(x,t) = 2% S(New)s)x (?R (Es) cos (wt - %?R(/\/’s(w) s) -x)

+ (&) sin(wt ~ RN (w) 8) x))
c
(2.34)
it is mathematically quite convenient to work with the complex field*! E(x,t). For
the corresponding POYNTING vector S(x, ¢) we have

lo (S(x, 1)) = 4<§R<E(x,t)>><§)%<B(x,t)>>

" 23062“2%‘(%(@5)* R(E.@) x (Na(w) s x £4(w)) (235)

(233)
where () means averaging over ¢. By (2.31) and

ax(bxc)=(a-c)b—(a-b)c Va,b,ccC? (2.36)

this gives??

(2.37)

x4
For real s and ¢ (w) = e(w) 1 the polarization of the wave is given, according to

Draft, November 5, 2011
2ONote that with (1.24) the crossing relations (2.4) imply that (2.29) also holds for w replaced

by —w. Similar formulas hold for B(x,t) and B (x,w) with By = 1o s x £, .

2See (Bloembergen, 1996b, Section 1-2) for the justification of this convention.

22Note that for isotropic media and real s the wave is propagating into the direction of

%(Ns(w))s perpendicular to the planes of constant phase while the planes of constant amplitude

are perpendicular to S (N(w))s.
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polarization JONES vector
linear et < C.OS @ >
sin v
: 1
. . 2/1 e ¥
right circular 7 < ; )
i 1
. el®
left circular 7 (—z)
elliptic else?

Table 2.1: Polarization of monochromatic plane waves

Table 2.1, by the corresponding JONES wvector®

E
. Blxo)
E (x,w)
def )
JS(Xa LU) = /E"’(X CU) ’
by - ——
E (x,w)

relative to a right-handed orthonormal basis (ag, bg,s) of R3.

2.2.2 Simple Reflection and Refraction

For isotropic media, i.e. if (2.17) holds, the solution of (2.32) is obvious:

s Ew)=0, *MN(w)=Nw ¥ /e(w), %(N(w)) >0.

Let us now consider the following situation:?°

The region G4 o {x € R®: +z! > 0} is filled by some homogeneous
isotropic linear optical medium with (generalized) permittivity € 4 (w) =

Draft, November 5, 2011

BGee (Jones, 1941; Azzam and Bashara, 1987; Kliger et al., 1990). For actual measurement of
polarization see (Gjurchinovski, 2002). .

Z4Here — contrary to the convention used, e.g., in (Reider, 1997, Sect. 1.5) — right circular
means that the bg component of E(x,t) lags the as component of E(x,t) by 90°. This way — as
pointed out in (Jackson, 1975, Sect. 7.2) — right circular light corresponds to positive helicity,
hence to right handed photons.

d et /1
25Note that, for w # 0 : dt‘%(\@ (z))

268ee also (Stratton, 1941, Ch. IX) for the special case that G_ is a perfect dielectric. For
realizable refractive indices see (Skaar and Seip, 2006; Grigorenko, 2006). For generalization to
curved boundaries see (Hentschel and Schomerus, 2002; Hentschel and Schomerus, 2006).

2
=0Vt <<= ze{-i+i}.
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Axd A4
e+(w) 1, and conductivity o+ (w) = o4 (w) 1. Moreover, assume

2

(W) # (Vo) (2.38)

where

Ni(w) /e (W), afe(/\/i(w))zo.

Then scattering theory suggests to look for modes of the following form:*7

e Inside G_ the electric field has the form

E_ (Xv t) =&, e_i%<6t_N7(w)37.x> + & 6_1.%(“_]\/*(“’) s’,~x) .

e The electric field inside G, has the form

E+(X7 t) =& e_i%(Ct—N+(w)s+.x) '

St
o s .s_.s;, & €y &, €C\ {0} .
e (2.31) holds for s € {s_,s'"_,s; }.

- . . . A def
e s — P, s_isnot isotropic®® and P, s_ = (e;-s_)e; #0.

For this Ansatz the boundary condition for the elctric field requires

e; X (85_ efi%/\f_(w)s_-x +Ey e*i%/\/’—(w)s’_-x _ 8s+

‘x1:0

for all 22, 2 € R. This is equivalent to
e; X (Es_ (W) + Ey_(w) — &, (w)) =0
and SNELL’s law *

e1 x N_(w)s" =e; x N_(w)s_ =e; x N (w)s, .

Defining

def s — P, s_ def
= Cy = C3 X €1

Draft, November 5, 2011
2TFor nonisotropic media the Ansatz has to be refined.
28 A vector z € C? is called isotropiciff z-z =0.

45

efi%./\/'+(w)s+-x> -0

(2.39)

(2.40)

P Usually SNELL’s law is given for the special case Ny (w) = ni(w) € R, s'_,s1 € R?. Then:

’n,(w) sing” =n_(w) sinf_ = ny(w) sinf ,‘

where
: 1 ! . / def 3
Sy =cosfie; +sinfres; s =—cosh e +sinf_e3, ez = c3 R’
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we get a basis {ey, cy, c3} of C? that is orthonormal in the sense that

-5 def
C; - C, =05k, C1 = €1.

For c3 introduced this way SNELL’s law implies
s' ,s_,s, €Span{e;,c3} C C*. (2.41)
Similarly to (2.39), assuming vanishing permeability, we get
e1 X (Bs_(w) + By_(w) — Bs, (w)) = 0. (2.42)
By (2.33) the latter is equivalent to
0=e; X (M (w) (s- x Es_(w) +5- X Eg_(w)) —Nip(w)sy x Es, (w)) . (2.43)
Thanks to (2.41) and (2.31) the splitting™
Es(w) =EF (W) ey + Elw) (cy x8) fors=si,s_. (2.44)
is possible iff (2.32) holds.

Proof of (2.44): Obviously, due to our assumptions concerning the material con-
stants, (2.32) is equivalent to
s-Es(w)=0. (2.45)

According to (2.41) and (2.31) {s, ¢y, ¢y x s} is a Basis®! of C*. Therefore, a splitting
of the form
Es(w) = & (w) ez + El (W) (e2 x 5) + &2 (w) s

is possible. But, since s-co =0 =s- (cy x s), £244(w) vanishes iff (2.45) holds. 1
With this splitting, because (2.36) and (2.41) imply
e; X <s>< (chs)) =e; XCy, € X (cy3xs)= (e s)cy,
(2.43) becomes equivalent to

N-(@) (€L (@) + &) (@) = Me(w) €L, (@),

(2.46)
N_() ((e1-5-) & (w) + (e1 - )5 (w)) = N (w) (er-54) & (w).
Similarly we see that (2.39) is equivalent to
£ (W) + &5 (W) = & (w),
(2.47)

(er-5-) El (W) + (e1-5)EL (w) = (e1-54) &l ().

Draft, November 5, 2011
30The notions + and I refer to the e;-cs-plane in C3, z; L z, meaning z; - zo = 0.
31Note that (cy X 8) - (€3 X 8) = (cg - C2) (s+8) — (cz-8)> = 1.
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Exercise 3 Using (2.31) and (2.41), show the following:

a) (2.47), (2.46), (2.38), and SNELL’s law imply

e -s_=—e; -s_,

if solutions with & \ (w) # 0 as well as those with & (w) # 0 exist.

b)
s =(c3-s_)es—(e;-s_)e;.

c)

_ M) Cc3-S_)cC — N-(w) C3-S 2e
RRAmE “i\/l (g tes)

L) = e st oy o)
) = N e A e
o) = B e T (e L)
It R IR

Exercise 4 Using SNELL law, show the following:

a) (2.43) implies

e (6 (W) Es_ (W) + € (W) Ey_(w) — € (w) Eg, (w)) = 0.

b) grad (cs - E(x,t)) is continuous.

c¢) grad (c3 - E(x,1)) is not continuous, in general.

Draft, November 5, 2011

32We assume that the denominators on the r.h.s. of (2.51)—(2.54) do not vanish.

47

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

For

the evaluation of these formulas in the case of nonabsorbing media and s € R? see, e.g.,

(Monzén and Sanchez-Soto, 2001).
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Let us consider the case®

R(e;-sx)>0. (2.55)

Then &5 e’i%(Ct’N ~(@)s-x) may be interpreted as incoming wave,** reflected into
G_ as £y e 1%(ct=N-s"x) anq transmitted into G, as Es, € Zf( ~Np(@)six)

As a direct consequence of (2.37) we have

e, - <857 (X, t>>|11:0 =e- <Si‘_ <X7 t)>‘m1 e - <Ss“_ (X, t)>‘11:0 )

=0

where?®®
Se (x,1) % POYNTING vector of &, e~#5(ct-N-(w)s-x)
St (x,t) ' PoyN<TING vector of ELcy e—i2(ct—N-(w)s-x) :
st (x,1) ' PoyNTING vector of &) (ca xs) e i (ct-N-@)s-x)

Since, similar relations hold for s’ and s, instead of s_ , we may analyze the energy
flow for the *- and l-modes separately. Let us define

er- (S5 () )
Rf(w) ¥ - =
S- e - <Sé‘_ (x, t)>| i 7

for e; - <SL X, t) >| # 0
e '<SL X, 1) >| w0
21=0

- (S (1))

and similarly for | instead of *. Then by (2.37) and SNELL’s law (2.40) we have

Th(w) < + -

|10 J

n er - RIN_(w)s_) .. 2 N

B (@) - el-%((N((ws £ | /|5‘

N_(w) (e1-s-) = Ny(w) (e1-s)
e v (e Eyam e 220

and
s s Ll
9%</\/’+(W) (e1 'S+)> ‘ IN_(w) (e1-s.) 2(2 57)
253 R(N(w) (er-5.)) IN-(@) (er-s) + Nofw) fer-s)|

Draft, November 5, 2011

33For R (e - s4) < 0 we have incoming waves from both sides of the boundary.

34 Actually we should form wave packets by integrating with suitable weights over s_ and w.
35Recall (2.44).




2.2. MONOCHROMATIC WAVES OF EXPONENTIAL TYPE 49

Therefore®
RE (@) + T (w) = 1
§R< L\ (w) (e - s+)> L (Ni(w) (er-sy)
- RV (@) fer ) " (N<w> (e - s))
= (M@ (er-52), Molw) (015 ) N-(@) er -5 | NR A0,

1.e.:

In general, the usual interpretation of R (w) as reflectance and T;- (w)
as transmittance (of the T-mode) is not strictly justified.

For the l-mode the situation is more complicated, since, e.g.,*”
R (N_ () (gs,(w) : s_) £ (@) —ic (5-x5.)S (/\/_ (W) & (W) gs,(w)) .
The latter, however, implies

}2

R (/\/_(w) (557(@ : s_> £, (w)) —icy(s” xs.)|E) (w)
and, therefore, similarly to (2.56) and (2.57) we get

%(/\f_(@ (cs - s_)> (5= xs.) = SN () (cs - s+)> (57 x84) =0

(2.59)

and

Draft, November 5, 2011

36Note that

R(z4) 4
=R|— ) <<= Z72_.(zZZ—2_)=2,72_(zZZ—2_) .
%(Z_) Pl + ( ) + ( )
For a discussion of the reflection and transmission in the case of normal incidence see
(Lodenquai, 1991).
37Note that, e.g.,

ico- (S xs_)=2af fors_ =ae +ifcs a,8€R.
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Warning: Note that (2.56), (2.57), (2.59), and (2.60) hold only for
%(/\L(w) (e - s,)) #0.

A direct consequence of (2.57) is that §R(N+(w) (e -s+)> = 0 implies T3 (w) =0,

i.e. total reflection of the *-mode.?® If, in addition,
SV (@) (e3+5)) (5= x 5.) = SN () (5 54) ) (55 x 54) =0
holds then, by (2.60), also T (w)=0.

Strictly speaking, however, total reflection appears only since G, has infinite
diameter. If G, is replaced by a layer of finite depth, then optical tunneling is
possible, i.e. partial transmission of radiation under the conditions of otherwise total
reflection. Then, however, there is a superposition of two evanescent modes inside
G, with non-vanishing e;-component of the total POYNTING vector.?”

Remarks:
1. Multiple total reflection may be used for building useful optical
devices (e.g. wave guides).

2. In case of total reflection the evanescent wave inside G, has higher
spatial frequency (=higher resolution) in the direction of propa-
gation than usual and may have considerable amplitudes near the
boundary of the media. These modes are exploited by near-field
scanning optical microscopy®® (NSOM), converting the evanescent
modes into propagating ones.

3. Usually scattered light contains evanescent near-field components
(Wolf and Nieto-Vesperinas, 1985).
4. Optical tunneling may be used for coupling wave guides.

Exercise 5 For real Ni(w) = Ni(w) = ne(w) and s_ € R3 show that RJ (w)
vanishes iff )
(e1-s_)° _(n4w)
1—(er-s.)? \np(w)/)

Ni(w)=ni(w), n_(w)sinf_>n;(w), s_€cR>

Draft, November 5, 2011
38Usually the case

is considered, corresponding to total reflection since the e;-component of (2.50) becomes purely
imaginary.

39 And the results for incident monochromatic plane waves should not be applied too naively to
almost monochromatic incident rays!

40Gee, e.g., (Ohtsu and Hori, 1999) and (Paesler and Moyer, 1996).
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i.e. iff Zey,s_ coincides with the so-called BREWSTER angle arctan - Ewi . More-
ny(w
over, show that in this case
Rl (wW)=0 < §_-s;,=0.
2.2.3 Birefringent Media (Crystal Optics)
Generally, (2.32) is equivalent to
<~
Mg(w) Es(w) =0, (2.61)
where Tl (12 (1.3
o ot 5 (o s'st s s's .
Mg(w) = (./\fs(w)) 1 — [ st s%2s% %53 — €(w).
Bgl B2 ¢33
(2.61) can be fulfilled iff
x4
det(MS(w)> ~0. (2.62)

Therefore, we have to choose the complex refractive index N(w) such that
(2.62) is fulfilled and determine the (complex) direction of Eg(w) from (2.32) for
such Ng(w).

Reasonable physical assumptions imply that*!
a-c(wb=b-€.(w)a VabeC? (2.63)

Therefore, if NVg(w) resp. N(w) are solutions of (2.62) and Es(w) resp. E’s(w) cor-
responding solutions of (2.32), we have

(Ns(w))2 v (/\/S/(w))2 — (?c(w) Es(w)> (W) Ey(w) = 0. (2.64)

Proof of (2.64):
(NZ(@)? (€elw) Eo(@)) - Celw) E4(w)
= (M) (M) Prs £s(w) - Prs €5(w)

4

Na(@))? (M2(w))" Ea(w) - Pro&'5(w)

Draft, November 5, 2011

4GSee (Romer, 1994, Ends of Sections 2.4 and 2.7).
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Because of
a-b=b-a VabeC?

this implies

and hence (2.64).

Note that (2.64), (2.32), and (2.31) imply

2

(M) # (M) = Eulw) - E) = (5 ) (- El)) . (269)

s is said to correspond to an optical axis for given w, if there is a unique
complex refractive index Ng(w) = N°4(w) for which there are two independent
solutions E5(w) of (2.32).

Lemma 2.2.1 s corresponds to an optical axis for given w iff
-1 _
se=0 = e (?C(w)) e = (N(w)) (2.66)

holds for all (complex) directions e .

Proof: Let s correspond to an optical axis and let Eg(w), E's(w) be independent
solutions of (2.32) for Ng(w) = N2*(w). Then, because of
ord 2 e 13
Es(w) = (M w))” (€c(w))  Prs&s(w), (2.67)

<> <>
(and the corresponding equation for £’s(w)) also P s Es(w) and P, ¢ E's(w) have to
be independent. Moreover, (2.67) implies

(Pretat)) = 03r)? 7. (Pratat)

for - - o
Is dif PJ_S (?c(w))ilpj_s
Therefore,
<~ 1 ?
s = 5 4ls
(Nerd(w))
Since -
sre=0 <= e=P,ge
and

< <>
a- (PLSb) = (Pﬁa> b Va,beC?,
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we conclude® that (2.66) holds. Conversely, if (2.66) holds, then

< :
is a solution of (2.32) for every z € P, s C3. The latter shows that s corresponds to
an optical axis. |

Let us assume that € (w) may be diagonalized:

ew) 0 w.rt. {z1(w),z2(w),z3(w)} C C?,

zj(w) - zp(w) =0, Vi, ke{l,23}.

(2.68)

Remark: (2.68) is guaranteed by (2.63), for suitable z;(w) € C3, if <?C(w) does not
have any isotropic eigenvector; see Lemma 7.4.13 of (Liicke, eine). Note, however,
that there are media (monoclinic and triclinic crystals) for which the eigenvectors of
€ o(w) depend on w.

If (2.68) holds with €?(w) = €2(w), then +z;(w) corresponds to an optical axis and

NI (w) = /2 (w) . (2.69)

In this case, whenever s o z;(w) ,

Es(w) =EY(w) ~ s x z1(w), (2.70)

is a solution of (2.32) for

Ns(w) = N7 ().

71 (w)
Note that, by (2.37),
seR = (S2(x,t))~s. (2.71)

To determine the second solution of (2.62) we may assume, without loss of generality,

that
( ) Z3(w) .

s=s'(w)z(w) +
31), we have

Then, w.r.t. {z(w),zo(w),z3(w)}, by (2.

(
. , [ W)t (w) 0 —st(w)s?(w) R
M (ko) = (./\fs(w)> 0 | 0 — C(w)

Draft, November 5, 2011

i nd i xd i nd
“2Recall that Pig Pis = Pis.
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and hence (2.62) holds iff either Ng(w) = N (w) or

z1(w)

0 = (M) )5t (@) — ) (M) s @3 ()~ W)
~ (M) s @) (@5 )5 @)

=éwﬂWG—WWWWVJMMﬂWj-

ce(w) e (w)

Therefore another solution £’(w) of (2.32) exists for Ng(w) = N&*°(w), the latter
being implicitly defined by

Neow) s @)\ * | (Now) 2(w@) | (Neow) sw)
(—N;rd(w) ) +<—€é(w) ) +<—€%(w) ) =1.| (272

In the nonisotropic case, (2.70) and (2.64) imply

EX°(w) ~ <?C(w))_1 <s X (s X zl(w))) : (2.73)

In agreement with (2.65) we have £7°(w) - £24(w) = 0, in the present case.”?

Exercise 6 Show that
EXw) - (SFU(x, 1)) = EX(w) - (ST°(x, 1)) =0

and
(Sg¥°(x,t)) € Span {s, ET°(w)} C Span{s,zl(w)}

T
if z;(w) % s € R3 and €. = (?c) )

Remarks:

1. For real directions e and real €.(w) we have

(70 o= (9 s (7:00) )

-1
and, therefore, (?C(w)> e ~ n(e), where n(e) denotes the nor-

‘x:e

mal of the index ellipsoid

{x ER: (x~ (?C(w))_lx) _ 1}

~1
43Note that, in the present case, (?C(w)> leaves the linear span of s and z; (w) invariant.

at x ~e.

Draft, November 5, 2011
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ig.
2. Since, therefore, s - £2°(w) # 0 Exercise 6 and (2.71) show that

i.g.

<S§XO<X7 t)> % s~ <Sgrd(xv t)> )

i.e. the medium is birefringent.

C

Lemma 2.2.2 If (2.68) holds with €}(w) # €2(w) and if s is a (complex) direction
3

corresponding to an optical axis for given w then H s-zj(w)=0.
j=1

Outline of proof: Let s correspond to an optical axis. Then, by Lemma 2.2.1,

3
s~x:07$x-x:>2(xj)2/eg:Cx~x vx € C3
j=1

holds for some C' = C(w) € C, where 27 . z;(w) for j = 1,2,3. Now assume
H?Zl s #0. Then

and, therefore, we have

<52x2+s3x3)2+ (x2)2+ (x3)2 40

sl

for all 22,22 € C. Comparing the z?z3-terms on both sides of the latter equation
shows that C' = 1/¢!l . Similarly we conclude that C' = 1/¢2. Therefore, H?:1 sT#£0
cannot hold if €} # 2. |

Corollary 2.2.3 If (2.68) holds with €} (w) # €2(w) and if s is a (complex) direction

C
with s - zo(w) = 0, for given w, then s corresponds to an optical axis if and only if

el(w) # e(w) and

C C

€w) — W) &)
e(w) — el(w) €(w)

s =+1/1— (s3)%21(w) + s> z3(w) , 53::l:\/
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Outline of proof: Let the direction s | zs(w) correspond to an optical axis. Then
there are complex numbers C' and s3> with

s=41/1—(s1)z1(w) + s z3(w)

ss'=0= s (?C(w))_ls’:C

and

for all directions s’ (by Lemma 2.2.1). Especially for

e &t zo(w), € def g8 z1(w) F /1 — (s1) z3(w),

therefore, we have
o -1
1/e2 = e'(ec(w)> e

_— (fc(w))_le'

2
1)
€ e

This implies €! # € (since € # €2, by assumption) and (2.74). Conversely, since
-1
e (?C(w)) e =0, it is obvious (by Lemma 2.2.1) that s corresponds to an optical

axis under these conditions. 1

Remarks:

1. For the case
ce(w) # €i(w) = (W), (2.75)
Lemma 2.2.2 and Corollary 2.2.3 show that only +z;(w) corre-

sponds to an optical axis. Therefore media for which (2.68) and
(2.75) hold are called uniazial.
2. Media with
eo(w) # ex(w) # €(w) # e (w)
are called biazxial. Actually, by Corollary 2.2.3, there are 6 optical
axes,™ but only those corresponding to ‘sufficiently real” directions
are relevant for physical applications.

3. For biaxial media with

Ew) > E(w) > et(w) >0 (2.76)

C

the real directions e corresponding to optical axes are given by
Corollary 2.2.3 (for the choice of indices corresponding to (2.76)).

4. Crystals of the hexagonal, tetragonal and trigonal system are uniax-
ial and the optical axis coincides with the crystal axis of six-, four-,
or three-fold symmetry. Crystals of the orthorhombic, monoclinic
and triclinic system are optically biaxial.

Draft, November 5, 2011

4 Note that the choice of indices in (2.68) is arbitrary
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2.3 Monochromatic Light Rays®

In this section we consider only isotropic media and — in order to be able to apply
standard FOURIER analysis (for tempered distributions) — only the case

Then, by monochromatic light ray we mean a solution of MAXWELL’s equations
fulfilling the following two conditions for suitable w and s € R? with [s| =1 :

1. E(x,t) = E(x) et (i.e. L E(x,w) = E(x) 0w — w))

2. |€(k)| < 1 unless |k|* — (s - k)* < |k|°,

where
Ek) X (2m) %2 / E(x) ™ AV . (2.77)

Let us assume s = e; and define

F(k W5a?) o780 = () e () datda?
™

Then the HELMHOLTZ equation (2.29) gives'”

(— (k1)2 - (k2)2 + (%)2 + (% n(w))2> (e“%”(‘”)x?) F (k' K x3)> =0.

8

2
(%) (eJri%n(w):z:3 f(kl, kQ, 33'3)>
2
_ et [ (Y)Y w20 Ynw) L 4 (2 L2 g
e < (Cn(w)> + 24 cn(w>8x3+(8x3 F(k' k5 a7)

~ +i%n(w)x3 o g 2 E i 1 7.2.,..3
e ( (Cn(w)> —}—Qch(w) F(k k%5 a°),

Since?

ox3

we conclude:

((k1)2 + (k) —2i fn(w)i> F(k' k% 2%) ~ 0. (2.78)

c ox3

Draft, November 5, 2011
45Gee also (Gomez-Reino et al., 2002).

46Recall (2.30).

4TRecall that, in the isotropic case, (2.29) implies div E(x, w)=0.

9 \?2
48Thanks to the second defining condition for light rays, we may neglect (33) ]:(kl, k% :c3) .
x
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This justifies to approximate F(k', k?; 2%) by the unique solution®’

ik >2+<1c2>2

Fokt kB a?)=e = 280@

IE

F (k' k2 0) (2.79)

of the initial-value problem

%.7—2(1@1 K a?) = —(k;)i;ékj)Qf:(klﬁ;x"’),
Fo(K',k%0) = F(k' k%0 / E(a',2?,0) e (K +2%2) g1 g2
Because of
£(x) = 217T / Fignwat (gl g2, g8) (R TR qpl g2 (2.80)
this means:
E(x) ~ (2m)” /(/S 1)) _’(x1k1+x2k2)da:1dx>
; (D24 (k%)? (2:81)
Ce T i R ) g
Hence:

For monochromatic light rays,”® £€(x) can be calculated everywhere ap-
proximately from its values on any plane that is perpendicular to the
propagation direction s.

Especially for (linearly polarized) GAuSsian rays, characterized (up to spatial
rotation and translation) by

1)2 22
+
E(X)|,5_, = Eo exp (_%) ;, S=e3,

Draft, November 5, 2011
49We skip the detailed mathematical prove of uniqueness.
50We do not elaborate on which profiles E(x)| , are actually possible for monochromatic light
rays.

z3=



2.4. GROUP-VELOCITY DISPERSION

(2.81) gives

E(x)

2
o
P

[}

tn

o
\
VRS
\

o

\
o +

oz k! +a?k?) dxldx2> i

_; D242

29

3 (o1 2.2
e 2 Zn(w) z e—l—z(:c k' +xk )dk’ldk'2

D24+(k2)2 3

_ 6—280/6_((k1)2+(k2)2)62/4€_l 2 Dn(w) e+i(x1k1+x2k2) dkldk2

_ %go H/exp (—(kn(x3))2+mk) dk

_ %50 J[[l (e—(2€5;3>)2 /eXp (—(kR(xS) —i%(;g))(z) dk)

_ (%@?)))Qexp(—<%&3)>2_(%;g)>z>’

where

since

+oo 5
R(R?) >0< R(R) = / em(Ret=0)" qy = % VR, 2 €C

o

(see, e.g., Sect. 2.1.3 of (Liicke, ftm) for a proof of (2.82)) and hence

1 2 k 1 —k24
— [ e ey = —eF/* VEeR.
\/27r/ \/§

2.4 Group-Velocity Dispersion

See (Reider, 1997, Sect. 3.2.1).

(2.82)

(2.83)
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Chapter 3

Nonlinear Optical Media

3.1 General Considerations

If, in Exercise 1, the damped harmonic oscillator is replaced by an
anharmonic one then its evolution depends nonlinearly on the driving
force. As a consequence — even if the driving force is monochromatic —
higher harmonics show up in the motion of the oscillator; mainly second
order harmonics if the medium is not inversion symmetric' (compare
(Reider, 1997, Sect. 8.1)). Moreover, if the driving force is a superpo-
sition of two monochromatic ones, the motion of the oscillator contains
harmonic components corresponding to the sum as well as to the differ-
ence of both frequencies.?

If the damped harmonic oscillator model is applied to the electric dipoles
of an optical medium then the accelerated charge of the dipoles create
a radiation field acting on the other charges in addition. Therefore,
actually, the driving field is a superposition of the incident exterior field
with the radiation emitted from the medium’s electric dipoles. Now,
if the harmonic oscillator is replaced by a more realistic nonlinear one,
then the radiation contributed by the medium itself (to the macroscopic
electromagnetic field) contains higher harmonics of every monochromatic
component of the incident (microscopic) field as well as components with
frequencies corresponding to the sum or difference of any two frequencies
present in the incident field.

Usually, very strong electromagnetic fields — as provided by laser pulses
of high intensity — or long optical path length’s in low-loss nonlinear
optical media (optical fibers, see (Agrawal, 1999, Sect. 1.3.3)) — have to
be applied in order to gain recognizable nonlinear effects. Then, however,

Draft, November 5, 2011
1Since, e.g., silicia glasses — the material of choice for low-loss optical fibers, formed by fusing
SiO5 molecules — are inversion symmetric they do not normally exhibit second-order nonlinear
effects.
2See (Mills, 1998, Sect. 3.1) for a perturbative calculation.
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interesting phenomena show up several of which will be studied in this
chapter.

3.1.1 Functionals of the Electric Field

Usually, especially in optical applications, P(x,t) is assumed to be a (sufficiently
well-behaved) functional of E. Then® we have the functional TAYLOR expansion®

P;(x,t) = i PY(x,1), (3.1)

v=0

PJ(V) (x,t) = (260); /ng)lkl, (x, ;%' 1, ;X ) ER (X)L
m

(3.2)
LB (X ) AV, dt) L AV, dE
w.r.t. an arbitrary Basis {by, by, b3} of R, where®

Pix,t) b, - Px,t), EY,t) b E(x,t).

Note that the coefficients ¥*) fulfill the symmetry condition®

) ! _ )

Xk, (K X 15X ) = XG0 e, (6 Xm0 i - -1 X 5, tr) (3:3)

for every permutation 7 of (1,...,v). If, in addition, we assume homogeneity in
space and time these coefficients have to be of the form

X;Z)lmku(x, tx, X)) = )“(gz)lky(x — X' t—t; . x =X, t—1).

Assuming, moreover, spatial nonlocality of the electric field contributions to be
negligible we have

Xg;i...ky(x,t;xll,t'l; Lax ) = X%)lku(t —th,. o t—t)d(x—x1)...0(x—X).

Thus,

v—1
(2m) *
e P (x, 1)
1 v) ok = kv —i(w1 ... 4wy )t
- T ity W15 W) B (Xw1) . B (x,w,) e dw; ... dw,
(3.4)

Draft, November 5, 2011

3See Appendix A.1.

3
4We use EINSTEIN’s summation convention meaning, e.g., Xk EF = Z Xk EF.

k=1
PRecall that the reciprocal basis {b',b? b?} is characterized by:
bwbk:{l for j =k,
! 0 else.

SRecall (A.1).
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holds for the (generalized) susceptibilities

v def —n - (v i(w ctwy ty
X wry ey w,) Y (2m) 7 /Xg.k)lmky(tl,...,t,,)e( thtetent) g e,

and (3.3) is equivalent to

The FOURIER transform of (3.4) is”

v—1
(271')T =)
o P (x,w)
Y ~ ~ky
= / g'k)l...k;y(wlv W) E o (xw) . B (Xw,) 0 (w e w, —w)dwy - dw,
(3.6)
An optical medium modeled by (3.6) is called a linear optical medium if all the
nonlinear susceptibilities Xg.l,;)ln_ku(wl, ..,wy), v>1, vanish.®
Usually,

P(X, Zf) = 'Pel(X, t)
is assumed for optical media and the susceptibilities should be caculated by (time-

dependent) quantum mechnical perturbation theory.” For the tensor Xﬁ)(w) of the
linear susceptibility first order perturbation theory is sufficient.

3.1.2 Various Electric Polarization Effects

See (Romer, 1994, Chapter 5).

3.1.3 Perturbative Solution of MAXWELL’s Equations

1
If we replace P by P in (2.1) and Y by 3_(}( ) in the definition of the permit-
tivity € then the FOURIER transformed MAXWELL equations (1.18)-(1.21) become
equivalent to:

curl H(x, w) = —iweg € () B(x,w) + Ju(x,w) —iw P (x,w),|  (3.7)
curl B(x,w) = iwH(x,w), (3.8)

div (e € (@) E(x,w) ) = fex(x,0) = div(P"(x,w)) (3.9)

divB (x,w) =0, (3.10)

Draft, November 5, 2011
"For a listing of the dependence of the lowest nonlinear susceptibilities on the symmetry classes
for crystals see (Brunner and Junge, 1982, Sect. 3.2.2.1).

8Note that nonlinearity does not necessarily mean that ng)l g (@, w) # 0 for some v > 1.

9See (Armstrong et al., 1962a).



64 CHAPTER 3. NONLINEAR OPTICAL MEDIA

where
def

P (x,w) £ Px,w) — PV (x,w) b’

Now we have to replace (2.12) by the nonlinear equation'’

AN~

HE (x,0) = —iw g G (%, w) — w2pi0 P (x, w B (x, .)) (3.11)

in which we have written P" (X, w, E (x, )) instead of P" (x,w) in order to indi-

cate the functional (nonlinear) dependence on E (x, .), determined by the nonlinear
susceptibilities, and where

]:[E/(x, ) = o (A + ( )2?0@1)) Ev(x,w) — grad (div E(x,w)) . (3.12)

Motivated by the results of 2.1.3, let us assume that there is a unique (matrix-valued,

<
restarted) response function 7 (x,t) of the corresponding linear medium such that

R(x,t7) \/g/ Xt — 1) 3 (x ) Vi dF (3.13)

fulfills the conditions
0,8 =0 for (jx],1) ¢ [0,+R] x [0,+00)
— R(x,t;3) =0 fort¢ [O, M%R}

and s
HR(x,w;7) = —iwpog(x,w) (3.14)

for all sufficiently well-behaved 7, where
R(x,w;J) def L/’R(x,t;]) oHiwt gy
V2T
= /?(X —x,w) j(x',w) dVi . (3.15)

Let us only consider the case

jcrzo'

Then /Ev(x, w) is a solution of (3.11) iff the linear equation

HEo(x,w) =0. (3.16)

Draft, November 5, 2011
0 Again, (3.9) serves as a definition of pey(x,w) for w # 0.
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is fulfilled for

—~ ~

E/O(X, w)=E(x,w)— R(x,w;jﬁ) ,

where B .
I5(x,w) e P! (x,w; E (x, )) : (3.17)

This suggests the following perturbative solution of (3.11):

Take a solution Eg(x,w) of (3.16) and define recursively

—~

E,(x,w) déf/Evo(x,w) —i—’ﬁ(x,w;'jﬁ 71) forv=1,2,3,...

(compare Section 5.1.3 von (Liicke, ein)). Then

/E/(X, w) = lim /E\)/,,(X,w) :

vV—00

if the limit exists (in a suitable topology), is a solution of (3.11).

Certainly, one will try to get along with the first order approximation

—~ ~

E(x,w) ~ Bo(x,w) — iw / o xw) P (X w Box. ) dVie | (3.18)

(for properly chosen Evo(x,w)) as far as possible. Note that, by (3.11)—(3.13), we

have o _ .
HE(x,w) = —w’uy P" (x,w; E (%, )) (3.19)

in this approximation.

3.2 Classical Nonlinear Optical Effects'!

3.2.1 Phase Matching

Let us discuss the approximations (3.18) and

~ ~ —~k —~1
Pil(x,w) ~ 73](2) (x,w) = /Xﬁ)l(w’, w—uw)FE (x,0)F (x,w—w)dw. (3.20)
(0.0)

By (3.19), then, we have to expect that

WZW1+W2,

~ ~ for suitable wy,w; € R
X (wr,wn) B (%, w1) BY(%,w1) # 0 }

— E(x,w) #0

Draft, November 5, 2011
LA freeware program for calculating nonlinear frequency conversion processes is offered at:
www.sandia.gov/imrl/XWEB1128/xxtal.htm
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and hence

(_/E\/()(X, wl) # 0 # _/E\/()(X, WQ) — E(x,wl +CL)2) 7£ O) le,wg eR
holds for sufficiently nontrivial'> x(® . Especially for w; = w, this means second
harmonic generation. Of course, the crucial question is how strong these effects
are.

Actually, as can be explained by simple models, MILLER ’s rule '*

(2
A def Xjkl<w17w2)
e, w2) = =55 ORI
Xjj (Wi 4 wa) X, (wi) Xgp ' (w2

~ independent of wy,wsy,| (3.21)

w.r.t. the principal directions in the medium, is valid for a large variety of crystals.
Therefore the dispersion relations'# for the linear susceptibilities Xﬁ) , qualitatively
described by Exercise 1, are of great importance also for the second order suscepti-
bilities.

Let us analyze (3.18)/(3.19) for the special case that the solution EVO(X, w) of
(3.16) is of the form'

EVO(X, w) = g’o(x,w) <5(w1 —w) + 0wy — w))
N (3.22)
+&(x, —w) (5(w1 +w) + 6(ws + w)) :

Then we have

By (%) Bglox, 0 — )
= EF (%, w') Eh(x, 0w — ) (5(w1 —w') 4+ d(w — w’)) (5(w1 —wH W)+ (w2 —w+ W)
+§é€(x,w’)m<5(wl w') + d(wg — W) ) S(wr +w—w) + §(we +w — w’)
+ (e, —) Ej w0 — ( )
+ &k (x, —w) EL(x, 0 — w (

d(w; —w+w) +5(w2—w+w’)

(
)(5(w1+w —|—5w2+w)
)(5(w1—|—w +5w2+w)5w1+w W)+ 8wy +w — w’))

In the approximation (3.20), this together with

2 OV
ng)l(_wia —wy) = X§k)l(wi,w§)

Draft, November 5, 2011

12For inversion-symmetric media x(?) must vanish, because both 7)](-2) and E! change sign under
total spatial reflection.
13See (Miller, 1964). Obviously, this rule is consistent with the generally valid relations

2 2 2 1 1
X2 (wnrwn) = X (@, w2) = XD (—wr, —wa) , AP (—w) = xP(w).

14Recall the remark on page 37 of Chapter 2.
15We shall see, however, that such a choice may be inappropriate for first order approximation.
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gives

P (x.wi Eolx,.)) = Polx,w) + Polx, )
where!¢

'IND()(X, w) = 26w +wy —w) Xﬁ)l(wl,wg) g(’f(x,wl) g(l)(x, wo)
+0(2w1 — w) Xy (wn, wr) EF (%, wr) E§(x, wn)
+0(2ws — w) Xﬁ)l(wg,wz)gk(x w2)§l (x,ws)

+26(w1 — wy — w) X (—wa, wi) EF (%, wa) EY(x, wr)

+0(w) (X ewr, —wn) EF (%, wn) E(x, 1)

W

e, ) B ) )

Therefore, in the approximation (3.18) Ev(x, w) is of the form

E (x,w) = Eo(x,w) + Z E(x,w)d(w—w'),

where

def

67

Mwl W T {wl +w2a2w172w27w1 Wo, —W1 —WQ,—QW1,—QWQ7WQ _CUl} .

The static part of P™ (x, w; E o(x, )) (optical rectification'”) does not show up

in (3.18) because of the w-factor.'® Let us assume, for simplicity, that
{wl,wg} N ]\4W17w2 = @ .

Then special consequences of (3.19) are the equation

[:Ig'(x, 2wi) = — (2w1)” 1o Xﬁ)l(wl,wl) gk(x,wl)é'l(x, w) b’

for second harmonic generation, and the equation

A o~ ~ o~

HE(x, w1 4 ws) = =2 (w1 + w2)? pio Xﬁ)l(wl, wa) EF(x,wy) E(x, wy) b

for sum-frequency generation, where we have set

E(x,w) = E(x,wy) for j=1,2.

Draft, November 5, 2011
6Recall Footnote 13.
17See, e.g., (Shen, 1934, Sect. 5.1) for a discussion of this effect.

(3.23)

(3.24)

(3.25)

¥But it does contribute to Eo(x, 0). Note that ﬁ/Ev(x, 0) = 0 does not imply pex(x,0) =0.
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More precisely, (3.24) is a consequence of

E(x, w1 + wo)
= —i (wy + wo) /?(X — X', wy + wy) <2 Xﬁ)l(wl, ws) EF(x, wi) EXX', w2) bj> dVy
(3.26)
in very the same way as (3.19) is a consequence of (3.18).
Let us specialize further to'”
Eo(x,w) = &, (w) exp (2 %Nel (W) e -X) Vw e {wr,wa} (3.27)
and
{by,by,bs} = {e1,ey,e3} right-handed orthonormal basis of R? .
Then (3.25) and (3.26) imply
E(x,w) = E(z',w) VYw € {wi,ws,wr +ws} (3.28)
and therefore
- - o0 \? . ~
AL E(x,w) — V4 (vx E(x, w)) - <@) Pro,E(x,w) (3.29)

holds for w € {wl,wg, wy +wy}. Especially for w = w; + wy this means, according
to the definition of H (Equation (3.12)), that (3.24) is equivalent to

- 0 \2 . ~
€0 <?C(W1 + WQ) 8<X7W1 + CL)Q) + <%) PLelg(x,wl -+ w2)>

= -2 Xﬁ)z(wh wa) gk(X, wi) gl(X7w2) €,

i.e. to the equations

<€0 ?C(wl +wy) E(x, w1 + wg)) e = —2 Xﬁ)l(wl, ws) g’“(x, wy) E(x, ws)

and

~ 9 \? ~.
(60 € o(wr + ws) E(x,wy + w2)> -ej+ € (%> &7 (x, w1 + we)

=2 Xﬁ)l(wl,wQ)gk(x,wl)gl(x, wy) forj=23.

(3.30)

For simplicity, let us assume that the medium is uniaxial with axis along e; . Then

— ord — 2
Noo(e) = NE*(@) = V),

. 0 (3.31)
<6C(w) 5(x7w)) cej = e2(w) & (x,w) forj=2,3

C

Draft, November 5, 2011

9 Compare with (2.30).
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and, corresponding to (3.27), the slowly varying amplitude approximation®

o\ . w 9 .
K%) Alr' w)| < ‘ENel(w)% Az, w) (3.32)
should be applicable to
Azt w) def exp (—i %)/\/'el (w)ey - X> g(x, w) (3.33)
for w = w; + we . (3.30)—(3.33) imply
0 Gl j _—iAKz! .
%.A (x", w1 +wy) =Ce for j =2,3, (3.34)
where o w
ot m po Xy (wr + wp) EE (wn) EL, (ws)
and w1 +w w W
AK S L2 AL (W + wy) — Flfvel (wi) — ?2/\/61 (ws) .
The general solution of (3.34) is?!
Aj(xl,wl + LUQ) = AL]CC] (6_iA’le — 1) + éj
(3.35)

1 1
N P Y (3AK2Y)
% AR zt
with arbitrary €7 = C¥(w; + ws) . Thus we see:

sin x
=1:

1. Since lim
z—0 X

‘Aj(xl,wl—sz)—éj ~ S(AK) 21 /2 ‘xlcj‘ for }AICxl‘ <1;7=2.3.

2. Therefore, for sufficiently good phase matching |AK| = 0 arbitrary increase
of ‘g’(x, w1 + wg)‘ = )eiwiwz I(Noy (wiws) ) * Al (xh wy + wg)) in the direction of

propagation is possible in spite of absorption related to S (N).

3. This indicates that low order perturbative approximations may have to be
restricted to sufficiently small regions and that & (x,w) has to be adapted to
the region under consideration.

Draft, November 5, 2011

20Compare Footnote 48 of Chapter 2.3. Now, however, we allow for & (Ng, (w)) # 0.
?INote that (3.35) is consistent with (3.32) if |AK| < [<1E22 NG, (w1 +w2)|.
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Actually, under the conditions considered above, good phase matching is very
unlikely for wy,ws > 0. To simplify the argument, let us consider the special case
w; =wy and g = 1. Then

AC=0 <= Nel(2w1) :Nel(wl)
=  EQuw) =¢(w
3.31) c( 1) c( 1)
and the latter condition is usually violated in sufficiently lossless media as can be
understood by inspection of dispersion relations.

Fortunately, there are uniaxial media (with frequency-independent optical axis)
for which type-I phase matching

w1 + wy
C

w w
NE(wy + wo) & ?lNé’fd(wl) + ng;d(w) (3.36)

or type-II phase matching

W1+WQ
C

NG +wn) & NS (wr) + =2 N ) (3.37)

is possible without substantial damping if the optical axis is suitably oriented (not
along e;).

Exercise 7
a) Using (2.72), show that
[INoW)]?: seR?, 55 =1}

_ [min{‘eﬂ(w) e-(@)]}, max {|el ()],

@)},

Y

where €| denotes the nondegenerate and e the degenerate eigenvalue of €.
b) For w; = wy and the standard low-loss case
1 i
‘Ec (Wl)‘ < ‘Ec (2w1)|

show that
(3.36) => [el(2wi)| < |ed(wi)] -

3.2.2 Three-Wave Mixing

Let us consider a uniaxial medium with axis along ey € R and positive frequencies
wy,wy for which the phase matching conditions are such that a solution of (3.11)
(for 3., (x,w) = 0) with the following properties exists:



3.2. CLASSICAL NONLINEAR OPTICAL EFFECTS 71

1. For every sufficiently small region G in x-space there is a good first order
perturbative approximation (3.18) with a suitably chosen zero order approxi-
mation (solution of (3.16)) consisting only of

(a) two ordinary plane waves®* of the form

i %Ng{d(w) 2! 5(

€ord Ag(w) e w; — w)

= ord
c

+ eora Ag(w) €' Ne(w) ! S(wj+w); j=1,2

h
o 0,y o S €0 (3.38)
ord — ]61 « eo‘ ) .

and

(b) an extraordinary plane wave® of the form

€exo -Ag(w) ei %Ngi(o w)xl 5(W1 + wg — w)

oo Ag(w) & T 50 4ty + )

o (?C(w)> 1(e1 x (e; x eo)) | (3.39)

(?°(w))_1(e1 < (61 X e0)>’

2. There is a good slowly varying amplitude approximation for E(x,w). More
precisely: For some A;(z!,w) fulfilling®

where

d 2 1 w (9 1 1
<@) Az, w)| < ‘ZNel(w)%A(x ,w)' Vi e R,we R  (3.40)
with .
NCE forw=we , ,
Ne1 (w) _ e (w) r w w {wl WQ}
NEO(w)  for w=w; + ws.
we have

E(x,w) ~ egndAlz!w) ol £ N (W) ! <(5(w1 —w) + 6(wy — w))
Feoxo A(z!, w) € ENTT W 5w 4wy — w)

in some neighborhood of {wy,ws,w; + wa} .

Draft, November 5, 2011
%2Recall (2.70) and (2.71).
ZRecall (2.73) and Remark 2 in Section 2.2.3.
2 Compare (3.32).
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Under these conditions — according to (3.19), (3.18), and (3.5) — the following
equations are approximately valid:

~

e ord 1
H (A<$17w1) el e NS (wr) @ eord)

_ (3.41)
== )" (Al ) ) A ) EA
|w:w1+w2
I:[ <A(l’1, w?) ei %Ng{d(wl) o eord)
. - (3.42)
= — (wo)’ (A(ml,w) ez%Né’fd<w>w1) Azt wy) el e Nt et
|w=w1+w2
H (A(a:l, wi + ws) €' RN () ! eexo> (3.43)
3.43
=— (w1 + w2)2 A(z', wn) g & Nt Az, wy) e E Nt C,
where: ot
e 2
aj = 2o ng)z (Wi + wa, —wy) el el s
def
by = 20 Xy (wr + wa, —wr) ey el (3.44)
def 2
cj = 20 Xg'k)z (Wi, Wa) €y Chra

The coupling of the components with frequencies wy , wo , and wy + w9 via equations
(3.41)—(3.43) is called three-wave mizing.

For simplicity, let us consider only the favorable case®
€)= €y. (345)
Then?
€ord = €3, €exo = —€2 (346)

and, therefore, also for the extraordinary sum-frequency component the propagation
direction®” is e; . Application of P, to (3.41)—(3.43) and use of (3.40) gives the

Draft, November 5, 2011
25 Since beams (suitable superpositions of plane wave solutions) are used in real experiments
the propagation directions of all components should essentially coincide for most efficient sum-
frequency generation. See (Armstrong et al., 1962b, Sect. VI) for adaption to general eg .
26Note that in this case

(?C(wl + wg))71 (el x (e1 X eo)) = —(?C(wl +w2))7leo = —eﬁ (w1 +w2)ep.

2"Recall Exercise 6.
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approximate equations?
%A(wl,wl) = J\%e”%m Az, wy + wo) Az, wy) as
% Azt wy) = J\% el B2 At )+ wo) Az, wr) by, | (3.47)
% Az, wi +wy) = _/\Z/é;l(; :)_23002) A A2 wy) Azt ws) e,

where:

W1—|—(A)2

A NG )
Dok NG )

def W1+ wWo

A =

Wy —————

NS (wr + wa) + ng;d(wz) ,

W] ——

N:i(o(w1 + w2) + %Ngfd(wl) )
w w

- N(Si‘o(wl +CU2) - ?lNé’lrd(wl) — ngfd(W2>-

Note that (3.44) and (3.46) imply

w1 + wa

ag = —2/p Xi(%22)3<wl + wo, —ws) ,
by = —2pug X:(322)3(w1 + wa, —w1),
co = +2pg X%)?)(Wla wa) .

We consider only the case
def

(lossless media) and?’
K d:ef a3 — b3 = —Cy € R. (349)
Then the system of equations (3.47) simplifies to
, 2
i (w) K —_
i) = NS e ) T
1
, 2
K ) N
gy = MK oo ) A (3.50)
2
, 2
t(wg)” K,
Ayl = MBI e g0 ),
3

where
Ai(z) € A(x,w;) forj=1,2,3,

w3 = Wi —|—w2,
ki = %Ngfd(wj) for j =1,2,
k?g é w—ngfd(W3) .

Draft, November 5, 2011
ZRecall (3.12) and (3.29).
29Gee (Miller, 1964).
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If we write the A; in polar form

Aj(z) = pj(x) ™ Vje{1,1,3}
and define o

0(z) = 2 Ak + p3(2) — pi(x) — p2(2)
then (3.50) becomes equivalent to

/ Y i(w1)2K +i6(x)
pi(z) +ipy(z) pr(z) = k—lpa(x)ps(x)e ,
. 2
</ (W K 10(x
) +ih@ ple) = NI ) (e e,
. 2
<! (A K —10(x
o)+ i) (o) = LI ) ) e
Separated into real and imaginary parts these equations read:
2
w K . / /
i) = L ) (o) sind() () r (o) = i) con0le),
2
/ w K : / /
phter) = L ) (o) sn0la) ) pale) = —phla) cordla), (351)

ph) = + (“ig B pi(@) pa(a) sin0(@), ¢h(a) pol) = +o(a) cot 6(a).

The equations on the Lh.s of (3.51) imply that*’

3

e k; .
Wy |A;(z)]* s independent of z .
w.
j=1 "7

Therefore, with the definitions

def kj .
S Y 1,2,3
u] (j)gnrpj ]€{7 ) }

def (w1)?(wn)?(w3)”
¢ \/W Fikoks

the system of equations (3.51) become equivalent to®!

3.
ui(¢) = —U2( Jus(C) sinb(C), ¢1(¢)ur(¢) = —ui () cot B(C),
uy(Q) = —us(C)ur(¢) sin0(C), ¥5(C) ua(¢) = —us(C) cot O(C), (3.52)
uz(C) = +U1< )ua(C) sin0(C), @5(¢) us(¢) = Fus(C) cot O(¢) .

Draft, November 5, 2011

and

2
0By (2.37), if p = 1, Z—W is the total power flow of the components with frequencies

w1, wa, w1 + w3 (mediated over time), since we assumed the medium to be lossless.
31Thanks to the different physical dimensions of variables we do not need extra symbols for
functions when identifying f(£) with f(z) in spite of z # (.
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The equations on the r.h.s. of (3.52) imply

(0) = AS + 0t 6(0) 5 In (1) () 1s(0))

resp.

c0s0(6) e (1 (0) a() 1a(0)) = 1a(6) ) () #(C) s B(C
= —ASui () uz(C) us(¢) sinb(¢)

Ak ki ko k
AS déf_ 1 2 g '
K \/W(Wl)Q(M)Q(Ws)Q

Since the last equation on the Lh.s. of (3.52) implies

where

u1(Q) ua(€) us(€) sin Q) = 5 < (us())

O |
N

and since

d

0 0(¢) = (u1(Q) 1(C) us(€) ) = w1 (€) wa(¢) ua(€) #'(C) sin B(C)

d¢

= (m(Q Q) us() cos8(0))

T dC
(3.53) implies

r—3(w(0) as
ur(¢) uz(C) us(¢)

I' = const. .

cosf(() =

75

(3.53)

(3.54)

This may be used to eliminate 6 in, e.g., the last equation on the Lh.s. of (3.52):

T (m©) =2 \/ (1(Q) ua(Q) us(0)) (r - %(u?,(o)?AS)Q-

Thanks to the equations on the Lh.s. of (3.52), we have are constant:

m 2 (ua(0)) 4 (ua(0)) = const..
(1:(0)) "+ (w(Q)) = const..
<u1(C))2 - (ug(C))2 = const. .

3
[\
18

3
w
18

This together with (3.54) gives

¢

1 /(u3(C))2 d\

— 4
2

(420)" /X (ma = A) (my = A) = (I = L AAS) |

(3.55)

(3.56)

(3.57)
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2
Now the intensities <u](§)> may be determined from (3.54)—(3.56) and the (bound-

ary) values of the electromagnetic wave at ( = 0. For a detailed discussion see
(Armstrong et al., 1962b).

For the simple case

u; = wuy (second harmonic generation®)
AS = 0 (perfect phase matching),
uz(0) = 0 (second harmonic vanishing at the boundary),
' = 0 (no singularity in (3.54)).

(3.56) and (3.57) imply

1 (%(C))Q d)
- jE§/(ua(O))2 VA (mi = A)

itanh_l (us(¢)/ /1)
Vi

for ¢ > 0, hence
u3(C) = /my tanh (Ymy[C])

inside the medium.

3.2.3 Four-Wave Mixing
See (Shen, 1984, Chapter 14).

Draft, November 5, 2011
32We suppress an additional scaling of amplitudes that is necessary in this case.
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3.3 Quantum Aspects of Three-Wave Mixing

3.3.1 Quantized Radiation Inside Linear Media

Let us consider a uniaxial linear crystal with (essentially) real permittivity

e(w) 0 0
(w) = 0 ew 0 w.r.t. the ONB (ey, ey, €3) .
0 0  ew)

(1)

And

e(w):i—i-é_(>

Then, as shown in 2.2.3, for every (real) direction s there are monochromatic plane
waves of the forms

Ej,(x,t) x (s®@er) R (6_i(wt_% n?(w) sx)) (ordinary wave)
and

E¢.(x,t) o« (S X (s® 91)) R <€_i(Wt_%n:(w) S'X)) (extraordinary wave) ,

where
n°(w) e e2(w)  (independent of s)

W e

1
Correspondingly, the quantized electromagnetic field inside the ;( )-crystal is of the
form

and??

~ ~

B (x,t) = (Eg+> (x,1) + B (x, t)) +he.,
X

where
; f (o -3 A i VA
B 2 n) [ L)) g emrk)
— V2K
déf‘fllz‘xel
ordinary cl‘a,ssical wave
and
0 -3 - dVi
E) (x, ¢ def 90 g/ (k) ao(k e (k o i(we (k) t—kx) _
o (x,t) = (2m) Jfe(k) az(k) 2(k) oI

def g (k )
= =X (5 Xe
k] 7\ T 1

o
extraordinary classical wave

Draft, November 5, 2011
#3Recall that the optical axis is along e : ng (w) = n°(w).




78 CHAPTER 3. NONLINEAR OPTICAL MEDIA

Of course, the Hamiltonian H ) has to fulfill
X

~ ~

7
- [H<—><1> cEoo(x, t)} -

0 -
3 | DYNGH) (X, t) .
X X

2%

Therefore (up to an additive constant) we have

ﬁ;“) - / (n%(k) (dl(k)>T&1(k) + hwe(k) (ag(k))TaQ(k)) AVi .

Correspondingly, the generator of translations, often misinterpreted* as momentum
observable, is

f’;u) = /ﬁk ((&1(k)>T&1 (k) + <d2(k)>T&2(k)) dV .

The amplitudes f,(k), f.(k) are fixed essentially by identification of the Hamiltonian
with the quantum version of /(HO(X, t) + U(x, t))de , i.e. by postulating® that

T T N
/ (h%(k) (1)) 1) + hese (k) (a2(k) ) ag(k)) dVi, = / H(x,1) Vi (3.58)
holds for some quantum field #(x, t) fulfilling the conditions

lim <<I) ) ﬂ(x, t) <I>> =0 for sufficiently well-behaved ® € Hgaq (3.59)

t——o0
and
me 1) =:eE(x, 1) —E(x t)+if3(x t)- —B(x,t) + E(x,t) - P(x,1):
at ) €0 ) a ) Lo ) a ) ) ) B
(3.60)
where?®
N ~ T
Pt P+ (PTxn)
PU0t) Een [ 0 a(k) e € (wilk))elg e 0 d2v|“k‘

dVx

Vol

+(2m) 72 / £o(1) aa(k) €0 € (welk) ) (k) ¢ (00178

Draft, November 5, 2011
34See (Garrison and Chiao, 2004), in this connection.
35The requirements (3.58)—(3.60), adopted to (1.15)—(1.17), guarantee that the energy expection
values in coherent states coincide with the corresponding classical energies.
36Recall (2.1) and (3.6).
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Straightforward calculation yields

[Axoan = [ % 0" (@ (0)) ) i

) (3.61)
+f {reto) 00" (a2(8)) () i

c? k| po

and thus

fi(k) =iclk|\/pohc %, for j € {o, e},
[kl (ni(k))

by (3.58), up to irrelevant phase factors.*”

Proof of (3.61): ...c.cceeevrvnenn.

Final remark: One should not be surprised that the interaction with
the infinitely extended medium cannot be described in the naive inter-
action picture:

For fixed ¢, unless ; — 1, the quantum field EH(U(X, t) is

X
not unitarily equivalent to the free field E(x,1).

3.3.2 Nonlinear Perturbation
Let us now consider a finitely extended y™M-y® crystal embedded®® in the y(!)
cystal, i.e. that

«(1)

X (% 6x),0) = 0(x = %)) (2m)

=
g
—
o
&
~—
()
no
—~
&
~—
)
[
L
€
—~
~
=
~—
o
&
—

and

(2
X (et x), 1h:%h, 1))

= Xg(x) 6(x = x) 0(x = x3) o—

1 —i (wy (t—t) wa (t—t,
2 /Xgi’)lk&(w17w2)€ ( it t2)> dw; dws

Draft, November 5, 2011
37Obviously, such phase factors could be removed by corrsponding redefinition of the annihilation
operators a1 (k), az(k) not changing their (canonical) commutation relations.
38This way we (essentially) prohibit diffraction at the boundaries of the x(V-x(?) crystal.
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80

for some bounded region G whereas
YW =0 Vv>2.

(3.62)

The Hamiltonian of the quantized theory now is
ﬁ - FI(—)(U + / 7:[int(xa O) dvx
X g

with Hine (x, 0) being the (normally ordered) quantum version of Hipy (x, t) , the latter
(3.63)

being characterized by
lim Hin(x,t) =0 for sufficiently well-behaved E(x,t)
(3.64)

t——o00
9 : 9 @)
Hint(x7 t) = E](X7 t) ’ E 7)j (X7 t) )

and
ot

where
€o

P X,w) =
i )(3.6) V27

Inserting the latter into (3.64) we get

/Xﬁ)lkz (wlv CUQ) E ! (Xa (JJl) EkQ <X7 WQ) (S(Cdl +w — w) dwl de :

ﬁ)l/@ (w1, ws) EM (x,w1)

0 _
— Hine(x, 1) = —i il ) /EJ(X, W (w—w)x
ot (27)2
E™(x,ws) 5<w1 +wy — (w— w’)) dw; dws dw’ e ! dw
€ —i (W' +witw
= 2 - /(wl + wy) e W Wt Q)txﬁ)lb(wl,cug)
(2m)?2 _ N N
Fi(x,w') E* (x,w1) B*(x, wsy) dw; dw, dw’
and thus, thanks to (3.5),
10 . €0 —i (w1twatws) t . (2)
3 a%int(xv t) = —i (271)% /w et (Witwetws) xk3k1k2(w1,w2)
EF (x,wi) E®2 (x, wo) B (x, ws) dw; dws dws
€ —1 (w1 +wa+ws
= —i— 3 /wge (Witeat 3)tX§ci)klk2(w1’w2)
(2m)>2 N _ ~
E* (x,wy) E*2(x, wy) E*(x, ws3) dw; dwy dws

Draft, November 5, 2011

39Recall (1.15)-(1.17).
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For situations in which also
/wl e~ (witwatws)t Xi(g?km (Wi, we) B (x,wp) B2 (x, wy) B (x, ws) dw; dws dws

— /w3 et Witwatws)t X,(c?kle (Wi, ws2) EF (x,w1) B2 (x, wy) EF (x, ws3) dw; dws dws

(3.65)
holds and Xl(ci)kl k, (W1, wa) can be replaced by the constant tensor X,Ei)kl », this implies

Hint(x7 t)

[\CRNGV]

= ¢ X](i‘z)klkg / el (w1+watws) t Ekl (X, w1> Ekz (X, w2) Eks (X, (.u;),) dw; dws dws
= o X\ pn, EF(x 1) B2 (x, 1) B (x, 1) .
Hence, if PH is the projector onto a corresponding subspace of Hgeq , we have

Pr Hint (x,0) Py = 3 €0 BB (x,0) B2 (x,0) B (x,0): Py
X X X

3.3.3 Type-1I Spontaneous Down Conversion
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Chapter 4

Photodetection

4.1 Simple Detector Models

4.1.1 Single Localized Detectors

The counting rate at time t for a photodetector localized at x in an almost mono-
chromatic classical radiation field with complex vector potential is (the local
space-time average of)

3 . .
S A (1) A (x, £) 2
j17j2:1
where the 17172 (depending on the mean frequency of the radiation) characterize the
efficiency of the detector.’

Remark: For almost monochromatic (not quantized) light with mean
angular frequency wy

E(x,t) = —% A(x,t)

implies:

E (x, ) ED” (x,t) & (w0)” A (x,1) AD” (x,1).

For quantized almost monochromatic radiation in the (pure) state ¢ one can show?
that the corresponding detection rate is given in first order perturbation theory the

formally similar expression®
3
P=3Y <¢) AOV (x, 1) AP (x, 1) ¢> ey
j17j2:1

Draft, November 5, 2011
'For achievable efficiencies see (Jackson and Hockney, 2004).

2See Section 7.2.2.

3Hence, in this approximation, the counting rate in the vacuum state is zero.

83
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Special cases:
1. For ¢ = xa(«) we have
AP t) ¢ = a AP (x,t) ¢

with )
AW (x, 1) <Q ‘ AMx, 1) at Q>

and hence
3 . .
P=laf > A" (x, 1) AP (x, t) 2
j17j2:1

2. For the (normalized) n-photon state

1
= — AT "
N (a ) Q

we have
(0 ‘ A (% 1) AN (x, 1) ¢ ) =n A (x,) A (x, 1),

N———

== AP xix.at] ()"

in spite of

(o] B(x.t)0) =0,

Remarks:

1. The phases of the 1-photon state vectors do not play any role for
photodetection!

2. Therefore* the counting rates in the mixed state®

pale) 5 [ nallal @) (xallal )
= >[5 16 e @)l

are the same as in the (pure) coherent state xa(«) .

3. Usually, experimental checks of predictions for n-photon states are
performed via post selection.’

Draft, November 5, 2011
4See (Sanders et al., 2003) and (Nemoto and Braunstein, 2003) in this connection.
5This state corresponds fairly well to the field of a single-mode laser inside the resonant cavity
in case of high pump intensity; see (Mandel and Wolf, 1995, Sect. 18.5.2) and (Wiseman, 2004).
6Since coherent superposition with the vacuum state, at least, are unavoidable.
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4.1.2 Independent Detectors

For an almost monochromatic classical radiation field with complex vector po-
tential A (x, 1)

Paco(x1,t15X0,t05 .. 5 Xy, ty) dty - --dt,

-~

n

3
def H Z A)dv (X0, 1) A5 (X, 1) nlj;ujf/

v=1 Jv,gl=1

is the probability that for all v € {1,...,n} the detector localized at x, fires during

the time interval [t,,t, 4+ dt,]. Here ni”le characterizes the efficiency of the v-th
detector and we assume that the detectors have no (essential) effect on each other.
Correspondingly, for a coherent state y this probability can be shown to be

PX(Xl, ti;. .. ;X’mtn) dty - --dt,
in first order perturbation theory,” where

Px(xlatl; s aXn7tn>
3

S (| A ) A ) Al )
J1sedn=1

o AR (% 1) ¢> i G € Hgaa

This together with the general rule (6.11) and the optical equivalence theorem shows:

For every physically relevant state = p of the radiation field — to first
order of quantum mechanical perturbation theory — the probability that
for all v € {1,...,n} the detector localized at x, fires during the time
interval [t,,t, + dt,] is

Pﬁ(Xl,tl;Xg,tQ; cee 7Xn7tn) dtl e dtn7

where:
Ps(x1,t1;X2, a5 ... i X, ty)
3
def 3 Tr<([;;1<—>j1 (X1, 81) - - AV (. 8,) ADIn () - - -
gl =1

c A (Xb t1)) n{'lii .. .ninjil )

(4.1)

We may also consider idealized ‘distributed’ detectors® which sample the field
at various points of space-time and are sensitive to the resulting effective field. A
Draft, November 5, 2011

"See Section 7.2.2.
8See (Klauder and Sudarshan, 1968, p. 150).
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typical example is YOUNG’s double-slit experiment, considered in 4.3.1, where the
actual detector is sensitive to the field sampled from both slits.” The probability
density for arrays of such detectors may be given by

Pﬁ(letl; s 7X7’L7tn>

3 X .
N ~(—) In -~ In
> T (p A e t) - AL (s ) ALY () -

) =
JlseeosdnsJ seemdn=

Q

A Ui, tl)) TR
N j Y ,
(AR ) 24D, )™ [ AP ot ) SPGH ) Vi
instead of (4.1), with suitable distributions S*(x/, ).

All this suggests that, in principle, all the correlation functions

Gén’m) (X1, 81,715 - - -5 Xnetms L Jntm)
def A n
( <HA (xy, ,,)) H AéJr)l(Xuatu))
p=n+1

with n = m € N are determined by the rate information from all possible counting
arrangements.

Remark: If G;"’m) exist for all n,m € N — as is usually the case for physically real-
izable p — then the totality of all these correlation functions characterizes p uniquely,
as may be shown by methods of axiomatic field theory (see e.g., Corollary 2.2.16 of

(Licke, gft)). Actually, according to (1.31), every G( ) is already fixed by its values
att1 :—tn+m—0

4.2 Quantum Theory of Coherence

4.2.1 Correlation Functions in General

As explained in 4.1.2, the counting rates of corresponding detector arrays for the
quantum state p of the radiation field are given (to first approximation) by the 77] viv
and the correlation functions

n n-+m
n.m . . def A j
G(ﬁ ' )(Xb tlv]l; <o Xy, tna]n) ﬁ TI'( (H JV XV? V)) H A(—H]‘“(XM, tﬂ)) :

p=n-+1

Draft, November 5, 2011

9See, e.g. (Ficek and Swain, 2001) and (Brukner and Zeilinger, 2002).
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In the following we make use of the identification

def

r, = (X, t,5,) E M E R xR x {1,2,3} .

In this notation we have, e.g.,'”

*

Ggf’m)(xl; e D) = <Gl(3?’m)(:vn+m; . ;x1)> Vn,meN, zy,...,Tp1m € M.
(4.3)

11

Lemma 4.2.1 The density operator p' on Heeaq is a coherent state,'' i.e. there is

a mode a and a complexr number o with
7' = | Da(e) ) (Dale) 0| (4.4)
iff there is a function V() on M with

n * n+m
GO (453 ) = H(vm)) [[ Vi) YrmeN, a,... 20me M.
v=1 p=n+1
(4.5)
More precisely, (4.4) implies (4.5) for'?
Veti) = (D)9 A7 x 1) Da(a) Q)
108y e (4.6)

Outline of proof: The density operator p' is uniquely fixed by the correlation func-
tions G;?’m) (recall the remark at the end of Sectionnlqo-S-indDet). Since, obviously,
(4.4) and (4.6) imply (4.5) this proves the statement. g

The state p' of the radiation field is said to have Mth-order coherence'® if
there is a function V(x) on M with

G;’fyn)(xl;...;xzn):ﬁ<V(xV))* ﬁ V() (4.7)

v=1 p=n+1

for all n € {1,...,M}. It is said to have infinite-order coherence if it has
Mth-order coherence for all M € N.

Draft, November 5, 2011

OFor additional properties see (Walls and Milburn, 1995, Section 3.2).

HRecall Sections 1.2.4 and 1.2.4.

12Comparison of (4.6) with (4.9) confirms: (A) = |a|®.

13Here we use the terminology of, e.g., (Ilauder and Sudarshan, 1968; Walls and Milburn, 1995;
Ficek and Swain, 2001) rather than that of, e.g., (Mandel and Wolf, 1995;
Hariharan and Sanders, 1996).
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Remarks:

1. In a more restricted sense only the
GOy 12y 5 2y)

are relevant. But for ‘distributed’ detectors also the G(»™ with
different arguments are relevant.

2. According to (Mandel and Wolf. 1995, Section 12.5) also the G5 ™
with n # m are experimentally accessible, in principle, if nonlinear
dielectric media are exploited in the counting arrangement.

3. Both the pure (coherent) states
emzlel’ i E (ae?mal)" Q (= xa(w) fir ¢, =0)
— nl Xa on

and the mixed state

A e K>|aﬁn
pallal) ="My =
n=0

n

1 1

— (@ " Q) ( —= (a Q’
a a

= (o) @)

have infinite order coherence.

4. For these states the probability p(n) for exactly n photons ‘being
present’ is given by a POISSON distribution:

_ (n) —(n)
p(n) = Tl €
(n) = |af (expectation value for the photon number) .

4.2.2 Correlation Functions of Single-Mode States

Lemma 4.2.2 For every single-mode state, i.c. every pt fulfilling'

for some mode a (as considered in 1.2.4),

n " n-+m
GO (153 k) = G H(V(x,,)) [] Vi) vnmeN, ... 20 e M
v=1 p=n-+1

(4.8)

Draft, November 5, 2011

14 As usual, we denote by PH& the orthogonal projection onto the subspace H; . The subspace
Hs was defined below Equation (1.82).
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holds with

and

Outline of proof:

n . n+m .
R A(=)Iv A~ J
Tr <p1 HA(() ) (xu,t0) H AE)H “(X/utu)>
v=1

p=n-+1
1, R R oA
= X (el (cﬁ)”a><<cﬁ>”9 [TA5" (oot
v,p=0 "1 v=1
n+m . -
IT A5 et ASD" (Rsrstir) (0)7 2 >
pn=n+2 1 1
= Y 2V (x, at)"—
1.8251.37,\ " PV @
1 i i 1 ﬁ(V(x ))* nﬁn V(x )<(m)m P (a*)”9>
W ey V) L Ve

(@) "ol @) ")

(I F——

) <fz>£*2’”f[_fv(x”))*uﬁlv(m"é;<<@*>”m9ﬁ1(&*)””ﬂ>- 0

=Tr(am ! (at)")

Theorem 4.2.3 For every state p' of the radiation field the following three state-
ments are equivalent:

2
1. G;’l) (.Tl, x2> = Gg’l) (xl, 33'1) Gg’l) (332, 33'2) V$1, To € M.
2. pb has 1st-order coherence.

3. plis a single-mode state.

Outline of proof:!® Assume the first statement to be valid and Gé}’l)(x,y) suffi-
ciently well-behaved.!” Then, using the shorthand notation
def (1,1
Glz,y) = GU (),
Draft, November 5, 2011

15Tn this context it is essential that, for n = 1, (4.7) is an exact equality. Unfortunately this
can never be checked experimentally.
16We essentially follow (I<{lauder and Sudarshan, 1968, Section 8-2 B).

17Otherwise we could consider suitably ‘smeared’ versions of Gg’l)(az, y); see (4.17) and (4.18),
below.
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we have
Gz, y)| = VG(z,2) VG(y,y)
and hence ‘
Gz, y) =r(x)r(y) e ? ™Y Va,y e R xR x{1,2,3} (4.11)
~~
>0

for some real-valued function ¢(z,y), where

Since

o has to fulfill
o(z,y) = —o(y,z) € R Vo,y e R* xR x {1,2,3} . (4.12)

Consider arbitrary x1, 72,23 € R? x R x {1,2,3} fulfilling

r(z;) #0 Vje{l,2,3} (4.13)
and define 4 ‘
M, gielm) vk e {1,2,3)
def , (4.14)
M = (M),).
Then (4.12) implies
M = M* (4.15)
and hence
1 MY, MY
M= (Mlz)* 1 M7y
()" (M%) 1
Therefore we have )
3 det(M) = R(M ', M%4M3) — 1
and, consequently,
det(M) >0 = MYLM%4M3 =1. (4.16)

Another consequence of (4.14) is

3

> ((TOU)Q))*(TOm)Q)AJQ

jk=1

3
> (G) GGy, )
k=1

0 v417<,<36(c7

Y

which, together with (4.13) and(4.15), implies
det(M) > 0.
The latter, together with (4.16) implies
MY M2 M3 =1

and hence
o(x1,22) + p(x2, 23) + @(23,21) =0,
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by (4.14). This, together with (4.12) and (4.14), shows that
M? = 3M.
Therefore, by (4.15), M/3 is a projection operator, i.e.
M, = A7 (AF)" Vi ke {1,2,3}
holds for suitable A', A2, A3 € C with |Al|2 + ‘/12|2 + |A?”2 = 3. Since
j - .
M, =1 Vje{l,2,3},

we have
M, =e'%ie ¥k

for suitable @1, pa, p3 € R. Together with (4.14) this implies
o(xj,ar) =@; —pr Vi k€{1,2,3}
and hence
r(@)r(y) #0 = o(z,y) = (@) —@y) Y,y € R*xRx{1,2,3}

for some real-valued ¢(z). This, together with (4.11), finally implies
Gla.y) = (V@) V@y)  Va,y e R xRx {1,2,3)

with . _
Vie) ¥ r@)e'*® vVzeR3xRx{1,2,3}.
This proves, that the first statement implies the second one.

Now assume that the second statement is valid. Then, since'®

ag / (g(x))* ALY (x,0)dVi (4.17)

2 * . de
) m;(g&)) ‘098,00 o

shows that all modes (1.58) are of the form ag , there is a sequence of complex numbers
21,22, ... With

(1.30

Tr(ptal a,) = (20)" 2, Y, u€Z. (4.18)

We need only consider the physically relevant case

o0
0< Z\zl,|2 < 0.
v=1

Then the definition 00 .

2
220:1 ||

b (4.19)

Draft, November 5, 2011

BWe denote by g(k) the FOURIER transform of g(x) :

gk) & (27r)*3/2/g(x) e xkdy, VkeR3.
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is allowed and specifies a mode b (‘BT Q‘ = 1). We may choose a complete system of
modes {By 7S N} (of type (1.58)) with

by=b. (4.20)
Then -
b= b, YpeN (4.21)

v=1

holds for suitable complex u,v fulfilling

Z(uu,\> Upr =0 Vu,veN. (4.22)
=1
(4.19)—(4.21) imply
un, = LZ VveN. (4.23)
Ziczl |2, |
We conclude that
i *
Tr(p' bt b = (u z) Uy 2y
(76365) 4.21,(4.18) y%::l ) (a2
* % 2
= i i, uy, (Ui, 2y
4.23) V,zpzl( )t ) V;‘ |
= 4
423"

and hence o
Tr(p'blby) =0 VA>1.
This shows that p! characterizes a single mode state with mode by .

That the third statement implies the first one is a direct consequence of 4.2.2. |

A direct consequence of Lemma 4.2.2 and (1.63) is:

n(n—1)~~<n—(1/—1)>
Juy = p for single-mode n-photon states with n # 0.

N J/

=0 f;; v>n
This especially shows:

Single-mode n-photon states with n # 0 have coherence of only first
order.?

Draft, November 5, 2011

n—1

9Gince for these states we have g;; = 1 # = g22.
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Lemma 4.2.2 also shows that?°
gon =n! for poce P44 350,
Thus:

Also the single-mode thermal states have coherence of only first order.

Corollary 4.2.4 The state p' of the radiation field has infinite-order coherence iff

9 2n
GUars . aa)| = [[OU  @uiw) Yn €N, 2. tpim € M.
pn=1

Corollary 4.2.5 If p' is a state describing photons of the single mode a then p'

has infinite-order coherence iff*!
pp(m) = <ZL—>:n e YmezZ,, (4.24)
where
p(m) % Ty (,31 L@ ey Q\) (4.25)
Draft, November 5, 2011
20Since

Te(e=7' %(af) )

= Tr<(eﬂ@*d (afa)@ta-1)...(afa—(n- 1)))

(1%3)

o0

i S (] G (o -l

= Z)\“/A(u—l)...(,u—(n—l))

=1/(1—-X)
n!
(I =X+l
nle P

(1-— 6_5)n+1 '

= "

and, therefore, especially

o 1 PN -
Tr(eiﬂ‘ﬂa)zi_ﬁ, 'I’r(efﬁ‘ﬁaN):i6 5 -
1—e (1—@_5)

#In other words: m — py(m) is a POISSON distribution.
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denotes the probability for exactly m photons ‘being present’ in this state and

(n) & Tr (ptata) .

Outline of proof: From the general relations

oo oo

Z_;J(lﬂ)”p,al(v) = Z;J(HA)” %<(&T)”Q|ﬁl (a")" )
= i % <(@T)VQ | pher mA+Y) (gh)" Q>
=0
= i % <(&T)VQ | pl e ata (dT)VQ>
— VT;0< plem(1+Y) a*a)
=, Ir (ﬁlte””’:) (4.26)

Lemma { ¢

and
pm) = ((ddA) Sy p,;1<u>>
= [r=-1

we conclude that

1 /d\" W A\ A
pﬁl(m)(d)\> ZO—!Tr (pI (aT) a )IA:_l Vm € Zy . (4.27)

m! v

If o' has infinite-order coherence, then (4.27) and Lemma 4.2.2 imply (4.24).
Conversely, if (4.24) holds then

e (@) o),
436, <<dd)\>m 2 1+ ,\)”p;al(lﬁ) .
a5 ((i\)mé(l—k)\)” <?3”>A=0 ()

(@

).

together with Lemma 4.2.2 implies that ' has infinite-order coherence. |

=
€
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4.3 Simple Interference Experiments

4.3.1 YOUNG’s Double-Slit Experiment

For the ‘distributed” detector of YOUNG’s double-slit experiment

double slit screen

the first order correlation function Gg;l)(gl;@) of the quantized radiation field
before the apertures determines the counting rates.
One can show?? that the first order degree of coherence

1 def din
gf(%j (z1529) = D < oD
(/G0 (@) 20) G (i my)

determines the visibility

For instance, we have

V(x,t) ~

—, 3) ‘ for vertical polarization .

R
g/gl)(xlat_ 173;X27t_
mn C C

4.3.2 HANBURY-BROWN-TwISs Effect

For the so-called HANBURY-BROWN-TWISS effect (interference of photocur-
rents) the second order correlation function

2,2 .
Gfxn Nay;..my) mit (2552) = (252)

is the relevant entity. Note that, for independent simple detectors,

. product of the photocurrents
P (X1, 115 %2, 1) ¢ { of both detectors

Draft, November 5, 2011

22Gee, e.g. (Mandel and Wolf, 1995, Sect. 4.3.1).
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if N
7713,"]; OC(sjuj{, Vv e {172}7jl/7j1//€ {17273}
Especially for coherent states of the form
_ |a\2§w\2

Y = 6a&T+ﬁBTQ

= double light source

with @ L b we have
A(Hj(x, Hy = <Q ‘ fl(*)j(x, t) (a al + 3 8T> Q> X

= (A0 + A 1) v

where A .
A (x,1) <Q A(+)j(x,t)adTQ>,
A x, 1) <Q’A(+)j(x,t) 5BTQ>.
If ,
Agﬂj(x,t) ~ A e—i(wt—kmergoa)7
-~
‘ >0
Al()Jr)j(X,t) ~ Az o~ (W t—ky-x+pp)
0
>

in the considered space-time region then this implies

22) . _ J1 ,—i(wti—KaeX14¢a) J1 ,—i(wt1—kpx14@p)
Go(xyag202,) = |Ale TR 4 Ay e |

J2 ,—i(wta—kax2+0a) J2 —i(LUt2—kb'x2+<Pb)‘
X ‘Aa e @ o)+ Ae

_ <|A31} AR 4+ AP A (el etk kb)xl—i—cc))x
x (\Ag‘f |+ |A2|" + AT Al (e 0amen) pllata)xe C.c.)>
and hence
(oM @pzyaya)) = (140l + 4] ") (Jaz + af])

+2.40 A A AP cos(0 1) -0 —0))

w
interference term!

where by ( ) we indicate averaging over one (or both) of the angles ¢,, ¢, . Hence

for
A —la*~|8[? 2
= L]
va=0 J pp=0

aetPa gt 4pBeten bt aetva i 4Beten b
e A Q) (e p Q| dp, dey,
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we have

Pﬁ(Xl,tl;X27t2) ~ Cl + CQ COS((ka — kb) . (Xl — X2>>

with suitable constants C7, Cy . The interference term may be used to determine the
angular distance of distant pairs of corresponding light sources:

:ﬂrl :ﬂ,
| i | |
| |
i L kel =l =2
i | E / Z(ks —ky,x; — %) < 1,
! 1
[ 1
k! 1k, koiik, — (kak)-(xi—x) & |ke— kil [xi—xof
I ]
I I A opew|x) — Xl
Wxg

‘Corresponding light sources’ are, e.g.:
e Almost monochromatic lasers with stochastic phase (2 pa(le]), pi (18 |)> .
e Almost monochromatic thermal (single-mode) light sources (tar light).
Note that for ‘corresponding light sources’
GS’”(@; z) = konstant

holds (within the considered space-time region) and hence the (spatial) interference
is determined by the second order degree of coherence?’

(22) oo
def Gﬁ (&1 3 Loj Loj £1)

@, .
95 (X1;25) = 11 1,1 :
Gfs Ny 2,) GV (2 )

Draft, November 5, 2011

ZFor the relation to ggl) for stationary polarized light see (Mandel and Wolf, 1995, p. 708).
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Chapter 5

Applications of Non-Classical
Light

5.1 Ciriteria for Non-Classical Light

According to GLAUBER a state p of the radiation field is called classical if in
Theorem 1.2.2 the py can be chosen nonnegative.'

The optical equivalence theorem explains why interference experiments with typ-
ical interference pattern — as in YOUNG’s double-slit experiment or the HANBURY-
BRrROWN-TwiIss effect — do not show any striking difference between classical and
non-classical light.

Inequalities, however, which are valid for classical light may be violated by non-
classical light, since inequalities are not invariant under averaging with non-positive
weights.

For states proqc With strictly bounded photon number this is quite obvious, since
they fulfill the condition

(nyn)
ﬁFock

whereas for classical light we always have

3
> /Gé"’”)(%---;&n)dxl---dxn >0,

j17~-'>jn:1

=0 for sufficiently large n, (5.1)

Unfortunately, preparation of states with strictly bounded photon number is impos-
sible and, moreover, (5.1) cannot be rigorously checked.

Better suited for experimental checks is the inequality

2

GO (1 apapimy)| < GV (wyimys oy 1y) GO (29 ;27 25)

(5.2)
for classical states p € B(Hgela) -

Draft, November 5, 2011
1See (Johansen, 2004) for critical remarks on GLAUBER’s classicality criterion. See also
(Miranowicz et al., 2010).
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Outline of proof for (5.2): Let {aj,as,...} be a maximal family of pairwise
orthogonal modes and define

Gl(lri7m);C¥N (1'1, e ;gn—o—m)
def & fasi
et ([ 00) T 40010
Then
GO on @iy zgiay) = GLY  (@iszy) GOLY o (5 0) -
—_—————
>0
For classical states this implies
2
2,2
GY )@1;@2;&2;&)’
2
_ . (2,2) o dérdyr déndnwy
= ngnoo /PN(&lv--wnN) G51+i771,...,5N+i17N(lplzalza&l) P =

>0
. Yonlen ) GED . -
- ngn@‘/( PN (&L y0N) G i . 15N+17]N(x1’£1)) X
e (1,1 déydy; ey dyy |
X Vpn (&) Gél"'gr]la 7fN+L7]N(x2;22)

™ ™

2 d&dny  dévdny "
T T

. (1,1) .
SCH%VARZ ngnoo pN(fl’ o 777N) ‘Gfl"'ml’ SENFINN (xl’ll)‘

—(2,2)
§1+ing,-.- ENtinn

/pzv(&,-..,mv ‘Gfﬁ-ﬂlh £N+mN@2;£2)‘

(2,2) P
—G51+7 1o En+iny (£21§27§27£2)

(152520 52,)
2 d&dny  dévdny
T T

2.2 2,2
= GV (@pmizn) G (mymarz0rzy) .

Definition 5.1.1 Let G = O x (11, 72) be an open space-time region and let p' be
a density operator on Hgea . Then pt is called stationary in G iff?

Ggf’m)(xl; 3 Tpgm) = Gf;f’m) (T1+ 750 T +T)

where
T+ T C (X ot +7),

holds for all n,m € N and for all x1,..., 2,1, € M and 7 € R with

xlv"'axn+m7$1+7—a"'7xn+m+7—Gg-

Remark: of course, also for stationary states there are stochastic fluc-
tuations.

Draft, November 5, 2011

21t is stationary in all of space-time iff e~ # Hrieta 7 gl et Hiea ™ = 51 Y7 c R,
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Corollary 5.1.2 Let G be as in Definition 5.1.1 and let p be a classical state of
the radiation field that is stationary in G. Then

(2.2) ... . . (22) (s o .
G, (x,x+7,x+7,x)§Gﬁ (x; ;25 1) (5.3)

holds for all x € M and all T € R with x,z +7 € G.

Outline of proof:

2
(Gém) (z; 5 @; @)) = PV pmun)GPP @+ mzt izt izt
\ stat. P P
D)
:(Gﬁ (z; &))
————

2
> ‘G§2’2)(£;§+T;£+T;z) 1
(5.2)

>0

While bunching
22),.. ) : (2.2) (o
Gy (e +mz+miz) <Gy o(zaax),
is possible for stationary classical light Corollary 5.1.2 shows that anti-bunching

(22) ... ) . (22) (0 e e
Gy (e +mie+7a) > G (z o ax)

)

is not possible for stationary classical light!
Bunching is typical for thermal light:

If a detector fires then with high probability the intensity of the radi-
ation field is considerable which — for coherent states — implies high
probability for detection of additional photons at that instant. There-
fore, strong stochastic fluctuations of the momentary coherent state of
classical radiation support bunching, i.e.:

The probability for detecting a second photon almost immedi-
ately after a first one decreases with increasing time delay.

Anti-bunching is to be expected if one can arrange that single photons arrive in
(essentially) fixed time intervals. This could be observed for resonance fluorescence.?

Draft, November 5, 2011

3See (Mandel and Wolf, 1995, Sect. 15.6.5) and (Kurtsiefer et al., 2000).




102 CHAPTER 5. APPLICATIONS OF NON-CLASSICAL LIGHT

A typical experiment of this kind is described, e.g., in (Carmichael, 2001):

I atoms
laser beam l non-classical
_——=
Pin I Pout
cavity

Tuning of laser light and cavity to a certain atomic transition makes
the states of the single atoms evolve in periodic cycles causing periodic
stochastic fluctuations of the (stationary) radiation leaking out of the
cavity. Naively formulated.

An atom that has just emitted a photon has to be reexcited
before it can emit another photon.

In this case, by the way, also the inequality ¢(®(0) > 1 is violated which has to be
fulfilled for classical light because of

<(A— <A>)2> = (A7) = (4)".

5.2 The Action of Beam Splitters on Photons

5.2.1 General Action of Linear Optical Devices®

From experience we know that the following is a fairly accurate description of the
influence of linear optical media on the quantized electromagnetic field:

The expectation values of the quantized field are solutions of the classical
macroscopic MAXWELL equations for the linear medium.

In this approximation the action of passive linear optical devices like beam splitters,
phase shifters etc. is as follows:®

Draft, November 5, 2011
4See also (Leonhardt, 2003).
5Note that the time evolution of the quantized electromagnetic field in the HEISENBERG picture
fixes the Hamiltonian of the field up to an additive constant.
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If {G,},cy is @ maximal family of pairwise orthogonal modes and if
<Q ’ AW, 1) al Q> — <Q ‘ AW x, 1) b Q>

agrees with the transformation of the complex vector potential in the
corresponding classical optics (for every v € N) then the state transfor-
mation for the quantized electromagnetic field in the interaction picture
is

flal, .. .ah, . ) Fbr, b )0
for sufficiently well-behaved f .

For coherent states this is a direct consequence of (1.84). Therefore, according to
the optical equivalence theorem, this holds for all states of the quantized radiation

field.

5.2.2 Classical Description of Lossless Beam Splitters

Consider the action of a beam splitter, as sketched in Figure 5.1, on an incoming
monochromatic classical light beam corresponding to the complex vector potential

Ai(rir)(x’ t) = (QW)_?)/Q\/ tohc /ain(k)e—i(“’t—k*) d2v|kk| ’

where®

(5.4)

and”

Linearity of the (plane) beam splitter implies that there are ry, 79, ;,to € C such
that the outcoming light beam corresponds to a complex vector potential

; d
Al (x,1) = (2m)**\/uohe / o (K)e ittt W

V2

with
aout (k) = 24, a4 (k) + 22, a5 (k)

Draft, November 5, 2011

6The 27 are just complex numbers without any physical dimension.
"Actually, it would be sufficient that k; - e3 = —ks - e3. Then, however the action of the beam
splitter would depend on k; - e3, in general.
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1,V 2 Vv
Zinalx\ s Rout A2
N 7
AN 7/

AN Ve
AN Ve
Ve AN
Ve AN
4/ \\

2 V.7 Sl oV
ZinaZ Zoutal

and®

For the fields

e . hw? /. : . 44
Eiin(x,1) © (2m) R (zwzl et WiTkix) _ oy 2l €+Z(Wt_k1.X)>e

e _ hw? , —
Bl,in(X7 t) d:f (271') 3/2 M02 w (Z Zjln efz(wt*kl'X) o Z'Ziln €+1(wt7k1'x)> k1 X ey
c
corresponding to the complex vector
e , dV;
AT (x,1) = (2m) 72\ /uohe / zhal] (k)e i) 2|kk!
with a (k) given by (5.4) we have
E(t)xlB(t) 1E(t)( t)><<k1xE(t)>
in(X, - Jin{(X, = ,in(X, X, T ,in(X,
8 o poc |k, | !
1 2 kg k,
= EinX7t rr— Eﬁmx,t '—E’inX,t
e Bt OF G = Buaost) 1 B0

Since?

27
r , — 2 2T
- 1 —i(wt—ki-x) 1 Ai(wt—kix) _ 112 112
/ (zzine —1z,€ dt = ” }zin‘ +|zin
0

Draft, November 5, 2011

80f course, S depend on the frequency and also on the polarization of the incoming radiation.
9Note that

2w

/w ettt =0.
0
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this gives for the intensity, i.e. the modulus of the time-averaged energy current
density, of this stationary field

2w

= 1
- / Eo(x,t) x — By(x,t)dt
0

4
2 - = (2 B (e + )

2 c?

Since similar results hold for the fields in the other arms of the interferometer, for a
lossless beam splitter the condition

12 2| .1 |2 2
’Zin| +’Zin - ”Zout‘ +|Zout’

has to be fulfilled. This means that S has to be unitary, hence of the form

Cl —(? e 1 .9 2 912
5= (5% fwe) s VER T ¢+ =1
The latter may also be written in the form
_ g @ —b 2 2
S=e b7 peR,a,beC,la"+ 10" =1 (5.5)

(with p =9/2, a=("e™™? and b= *e /%) or

S:ew<z _2) peER, a,beC, laf +[p)° =1

(with ¢ = (Y 4+7) /2 + 7, a = (Le™WH™/2 and b = e +7/2) " Anyway, the
transmittivity T resp. the reflectivity R is the same for both incoming rays:

R=n>=|rf, T=f=t’, R+T=1.

Beam splitters with R = T are called 50/50-beam splitters. Beam splitters with
r1 = ro and t; = ty are called symmetric. Thus:

i .
S = \6/5 (qiz ?Z) for symmetric 50/50 beam splitters (5.6)

(see Exercise E34c) of (Liicke, eine)).

5.2.3 Transformation of Photon Modes

Let us describe the effect of beam splitters on photons as a scattering process in the
interaction picture.”

Draft, November 5, 2011
108ee also (Yurke et al., 1986).
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The photon mode corresponding to the classical mode a)' (k) resp. aj (k) is

(%)id (k1) resp. ( ) V(ky) , where
aV(k) = ay(k) Yk L ey,

for the choice

Gg(k) déf (S) VkLeg,

and the beam splitter acts according to'!
V(ki) + 22 V(o) — 2l aV(la) + 22, aV(ko)
= <t1 % + 7 Z_l2n> aV(ky) + <7“1 Z_lln + 1o 2_12n> a(ks)

for arbitrary zl , 22 € C. This is equivalent to linearity plus

m’ ~in

(o) o) = (iagen) ® (- 2) EDIRE
= o)

Remark: The scattering matrix Sy in the interaction picture fulfills

So =0
and .
aY(k;) = SoaY¥(k;) Sy ' Vie{1,2}.
The scattering matrix S in the HEISENBERG picture —used, e.g., in (Mandel and Wolf, 1995,

Section 12.12) and (Bowmeester et al., 2002, Chapter 4) — fulfills
Qin = S'Qout

and

al (k) = Sav, (k) S~ Vje{1,2},

(dYn(kl)> :S_l ( out(k1)>
a3, (ka) ot (k2)

See Section 2.3.1 of (Liicke, ¢ft) for a detailed discussion of the two pictures of scat-
tering theory.

where!?

Draft, November 5, 2011
HRecall (1.58) and (1.60).
12Some authors mystify the fact that, e.g.,

Qg (k1) =ty aY, (ki) + 72 @y, (ko)

holds even if the input situation at the lower arm of the beam splitter corresponds to the vacuum.
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For (improper) incoming n-photon states (5.7) means that the beam splitter acts as

S G (V) - aV(K;,)) T 0

G1yenin€{1,2}
2 f 2 f (5.8)
— Z Cj1 yeeerin Zsjljldv(kﬂ Zsjnjndv(kﬂ'i) Q,
]1,7]77,6{172} ]1:1 J%:
where

(511 Slg)d_ef(h 7’2)
s% 5% rnoty)
Obviously, the total number of photons is not changed by the beam splitter.

Let us consider, for example, the special action'?

aVk) aV(ks)TQ —s %(aV(kl)HaV(kQ))*(iav(k1)+av<k2))*

_ 5 (k)" aV(ko) + aV(ks) V(o)) @

of a (symmetric, 50/50-) beam splitter with

S:%(_i _D (5.9)

Here the incoming state is a 2-photon state with one photon definitely entering
the beam splitter from above and the other photon definitely entering the beam
splitter from below. As if agreed upon before, the photons leave the beam splitter
either both on the upper side (with probability %) or both on the lower side. This
so-called HONG-OU-MANDEL effect effect is often coined 2-photon interference,'*
even though the relative phase of the two photon modes is irrelevant, in this case.
Needless to say, there is no classical analogue for this coalescence effect.

If the action of a beam splitter with S-matrix (5.9) does not depend on the
polarization then it transforms the (improper) BELL states

+ det LoV aV i (ky)a' T
k) = — (@) a¥(ke) £ ) 0 (ko)) O o)

+ et 1 oy ~H ~H AV T
qD#(kl)kZ) = E (a (kl) a (k2> + a (kl) a (kg)) Q,
Draft, November 5, 2011

3Recall Footnote 7. For more general input k-configurations see (Scully and Zubairy, 1999,
Sect. 4.4.3), where the HEISENBERG picture is used.

1See (Di Giuseppe et al., 2003) for experimental verification and (McDonald and Wang, 2003;
Lim and Beige, 2005) for generalization. This effect may be exploited for measurement of the spec-
tral density matrix of 1-photon states (Wasilewski et al., 2007). See also (I<im and Grice, 2003)

and (Zavatta et al.. 2004) for additional aspects of two-photon interference. For an extensive treat-
ment of two-photon interference in beam splitters see (Wang, 2003) and references given there.
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where
AH(k) = &1(1{) , EQ(k) €y X |k| vV k L €,
#0
according to
1 < T
OE(ky, ky) ﬂz (aV(ky) a¥(ky) + a'(k;) a(k;))' 2,
j=1
.2
3 X N
Pilkike) s (a"(k)) " (ky)) 2,
=1

O (ki ko) aV(ky) i (ky) — a(kp) V() Q2.

Note that @ is the only BELL state that is transformed into a state with exactly
one photon leaving the beam splitter on each side.'® This effect was exploited in
the first experiment on (partial) quantum teleportation (Bowmeester et al., 1997);
see also (Gisin et al., 2003).

Comment: By straightforward calculation (see 5.3.3) one can show that

x (k1) @ @ (ko, k)

N |

(@ (1, k2) @ 01 x(ks) = B (Ka, k2) @ U x (k)
+ 0 (1, ka) @ U x(ks) — @2 (ki1 ko) @ x(ks))

holds for t
x) X (v aV () + aati () 0
and t
(f)\H aV (k) + Ay dH(k)> Q forj=1,

Opx®) S (v a¥ ) - wmat()' 2 forj=2,
()\H v (k) + v dH(k))TQ for j = 3.

This allows for quantum teleportation:

Alice checks in which of the four BELL states photon 1 and 2 (corresponding to kj
and ks) are and communicates (by classical means) the result to Bob. If, e.g., Alice
found ®F(k;,ks) then Bob just has to apply Ufl to photon 3 (corresponding to ks)
in order to get its polarization state equal to the unknown'® original polarization
state of photon 1.

Of great practical use are also polarizing beam splitters, transmitting the
horizontal modes and reflecting the vertical modes. Appropriately oriented, these
Draft, November 5, 2011

15See also (Pittman and Franson, 2003) in this connection.
16See (Caves et al., 2002) concerning the notion of unknown state in quantum mechanics.
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Figure 5.2: Balanced MACH-ZEHNDER interferometer

devices act according to

a" (k1) 10 0 o) (%)
iH (K AH (K
cfv( 2) R U a (k2) (5.11)
aV(k,) 00 0 1]/ avk)
Vi) 001 0/ \ aviey)

5.2.4 MACH-ZEHNDER Interferometer

The quantum effect of beam splitters on one-photon states is already very puz-
zling. Consider, for example a MACH-ZEHNDER interferometer as sketched in
Fig. 5.2.

Its action on an incoming single photon in the (improper) mode a"(k;) corresponds
(up to irrelevant phase factors) to the following sequence of transformations:

AMk)tQ — (aV(ky) +iaV(ky)' 0

1

BS1 ﬁ

— % (aV(ko) +iaV(ky))" @

— %((z aV(ki) +aV(ko)) +i (a¥(ky) + &V(kg))>TQ
= iaY(k) Q.

For classical light there is no surprise:

The interferometer is balanced in the sense that there is complete destructive inter-
ference for the waves transmitted through BS2 from below and reflected at BS2 from
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polarizati olrotation ,’/§ switching out and polarization
b T . e V measurement after NV cycles
y @ = oN N
e —

Figure 5.3: Principle of ‘interaction free’ measurements.

above. If part of the waves is screened within the interferometer then this interference
is disturbed and light is emitted also from the upper side of BS2.

For the quantized electromagnetic field in a one-photon state, however, there is an
obvious problem:

If, e.g., the lower path within the interferometer is blocked then, with equal prob-
ability, the photon may leave BS2 either on the upper or the lower side. Now the
photon, considered as a particle, can only leave BS2 if it takes the upper path within
the interferometer. Then, however, the photon should behave as if the lower path
were not blocked at all, and there is no explanation for the photon’s ability to leave
BS2 on the upper side.

If the photon leaves the interferometer on the upper side of BS2 it ‘knows’ that the
lower path is blocked although it never entered that region. Obviously, the photon is
more than just a 'particle’. The described effect inspired ELITZUR and VAIDMAN to
suggest what they coined interaction free measurements (Elitzur and Vaidman, 1993).
The principle of a refined version, devised by KWIAT et al. (IKwiat et al., 1995;
Kwiat et al., 1999), is sketched in Fig. 5.3:

The interferometer is built with polarizing beam splitters rather than with polariza-
tion independent ones. A horizontally polarized photon will be inserted such that it
enters the polarization rotator first. If there is no object inside the interferometer —
built by PBS1, M1, PBS2, and M2 — then a photon entering the interferometer will
pass it without any change of polarization. If, however, the path via M2 is blocked,
then the photon will either be absorbed — with probability sin? % — or pass with

horizontal polarization. Thus, when the photon is switched out after N cycles (if not
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already absorbed) and checked for horizontal or vertical polarization, there are three
possible outcomes:

1. The photon will not be detected at all. This may be due to failure of the
detector or absorption by some object inside the interferometer. If an object is

inserted as described, the probability for absorption of the photon is N sin® %

— which may be made arbitrarily small.

2. The photon will be detected with horizontal polarization. This can only happen
if the absorber is inserted into the interferometer.

3. The photon will detected with vertical polarization. This can only happen if
the absorber is not inserted into the interferometer.

This way, with probability arbitrarily close to 1, an object may be detected without
interacting with it in any way.

5.3 Applications to Quantum Information Pro-
cessing

5.3.1 Single-Photon States and Quantum Cryptography

In general, non-classical effect require sufficient — preferably individual — control
of photons.

A standard technique for preparing single-photon states is sketched in Figure
5.4.

laser puls
\(Pl BBO | “EPR pair” creation
NI
W
BSP —= single photons
it 1 2
¥
o d
e
Dy

Figure 5.4: Possible preparation of single-photon states.

A laser pulse incident on a BBO (barium borate) crystal produces a pair of
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photon with polarization state

via spontaneous down conversion'” and this internal state fulfills the condition

JeC? }

1
3] =1 = V. =—UxJ, -J,®J),

V2

<a> def (Wi) Va,beC.
b N —a

e The internal quantum state of the ensemble of those photons
running to the right and having a partner making detector D5 fire
after passing a J-J, beam splitter has to be described (according
to quantum mechanics) by the density operator p = |J)(J]|.

where:

From this we conclude:

e The internal quantum state of the ensemble of all photons run-
ning to the right — irrespective of the behavior of their partners —
corresponds to

L1 1
L=—-|DH{J|+ = [T )T .
S+ S 10
The result of a J-J, test (“which detector fires?”) on photon 1 (left running)
predetermines the result of an eventually following J-J, test on photon 2 (running
to the right):
J, for photon1 = J for photon 1

J for photon 1 = J, for photon 1

(strict correlations).

If it were possible to produce exact copies of the unknown state of photon 2,
owned by Bob (far away from Alice ), then Bob could produce an ensemble of
photons with internal state J resp. J, if photon 1, owned by Alice, just passed a
J-J | beam splitter and made detector 2 resp. 1 fire. Since the states of (sufficiently
large) ensembles can be determined (quantum state tomography) Bob could imme-
diately check Alice’s choice of J-J | alternative. This could be exploited by Alice
for superluminal communication of information to Bob encoded in different choices
of J-J, alternatives.'®

Conclusion:

Draft, November 5, 2011
17See, e.g., (Gatti et al., 2003) for details.
18See(Herbert, 1982) in this connection.
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The principles of special relativity exclude the possibility of producing
exact copies of unknown quantum states (no cloning theorem).

The reason:

Every attempt to gain information not available a priori about a quantum system
usually results in uncontrollable changes of the system’s state.

The no cloning theorem opens up the possibility of single-photon quantum crypto-
graphy:
If Alice and Bob both are provided with some random N-bit sequence

k:<l€1,...,]€N>

known only to them they can use this for encryption'?

def

b=(b,....bx)—bok (b @k,... bx Dky)

of any N-bit information b. Alice can send the N-bit sequence b + k through some
public channel to Bob without being afraid that any eavesdropper could make use
of this. Bob however can decrypt the message according to

bok— (bak)dk=b
(thanks to k @k = (0,...,0)). Thus:

The essential point for secure secret information exchange is the ability
of Alice and Bob to create a common random key k known only to them.

A well established?” technology for secret key distribution is based on the so-
called BB84 protocol suggested by (Bennet and Brassard, 1984):

Alice and Bob agree upon two alternatives J-J; and J’-J’, with
2 1

@I =3,

Moreover they agree on certain instants of time at which Alice will send a photon
to Bob with internal state being randomly chosen from the set {J,J,,J',J }. Bob
randomly chooses a test of either the J-J or the J’-J’| alternative for the received

Draft, November 5, 2011
19 As usual, @ means modulo-2 addition:

bk (b+k)mod2 Vb ke {0,1}.

208ee http://wuw.idquantique.com. For more recent implementations of quantum key distri-
bution see (Sasaki et al., 2011) and references given there.
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photon. After all photons are sent and tested Alice and Bub determine, via public
communication, those instances for which by chance the had chosen the same al-
ternative. For these instances their results are strictly correlated (in the ideal case)
— unless the sending war perturbed (by an eavesdropper, for example). If these
correlations are confirmed for certain randomly chosen instance then the other N
results, kept secret, provide the common key.

The crucial point, however, is to make sure that (essentially) only sin-
gle photons are sent?! in order to prohibit — thanks to the no cloning
theorem — eavesdropping.

5.3.2 Entangled Pairs of Photons

Figure 5.4 also serves as a good illustration of the following well-known consideration
by EINSTEIN, ROSEN, and PopoLsky (EPR):

1. According to EPR the result of any test of a J,J, alternative for photon 2
should be predetermined (determinism) since: Without influencing photon 2
in any way (locality) one could test the J,J, alternative on photon 1 and use
the result to predict — thanks to the strict correlation of the photons — the
outcome of a corresponding subsequent test on photon 2 with certainty.

2. From this point of view quantum mechanics appears to be incomplete (exis-
tence of hidden variables) since there is no quantum mechanical state predict-
ing for all J-J, alternatives the outcome of a corresponding test with certainty.

This should be confronted with another well-know consideration by BELL which —
in a slightly modified form — is as follows:

Let ® be a (large but finite) ensemble of photon pairs in the state W_ . Then,
according to EPR the definition

J predeterminded for photon 1 and

def . 3
®y5 3 = { pairs from ¢ with: { J’ predetermined for photon 2

should be allowed (determinism) for every ensemble of EPR pairs (photons 1 and

2) and

def
Py = 55 U5y,

should be independent of J’ (locality). The correlations of the EPR pairs then imply

Dy =0yNdy VI T (5.12)

Draft, November 5, 2011
21See (Alleaume et al., 2003) and references given there for realizations of single-photon sources.
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and, consequently, for all JONES vectors Jq, Jo, J5 the inequality?®?
|CI)J1,J2’ < ’®J17J3| + |®J2»J3L|

has to be fulfilled.

Outline of proof: The inequality follows from

xix2 <xixs+x2(l—x3) Vi, xe xs € {01},
since?3

®5, 1= > xay, (@), @5, 1= > (1= xay, (@)

zeq:v_]l/ IG‘PJU

and
Xe, i, () = Xoy, (@) Yoy, ().

Therefore (5.12) contradicts the quantum mechanical predictions

@] /1@ =

)

Pyg, |/ ]®] =

N | —

v,
(T3

1
2

This is because for, e.g.,
J, (COS (E))) Vve{1,2,3}

sin (?

(5.14) implies

) 1

| |‘](£|‘]2| = 50032 (w/6)
— 3/8
> 2/8

% cos?(m/3) + % (1 — cos2(7r/6))

‘¢J1:J3’ + ’®J27J3J_‘
D]

rather than (5.13). Naive proposal:

Draft, November 5, 2011
22By |®,| we denote the number of elements of the set ®,, .
23 As usual we denote by yor the characteristic function of the set @’ :

!
o (2) def {1 for x € @'
0 sonst.
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Check (5.14) experimentally.

The vast majority of physicists considers (5.14) to be experimentally confirmed?!
and conclude:

Local determinism as assumed by EPR 1is inconsistent with physical re-
ality.

Concerning the actually remaining loopholes see, e.g., (Gisin and Gisin, 1999),
(Semenov and Vogel, 2010), (Morgan, 2008), (Stobinska et al., 2010), (Gerhardt et al., 2011),
and (Wittmann et al., 2011).

Generally speaking, we could take the attitude that every “no-go theorem” comes with

some small-print, that s, certain conditions and assumptions that are considered

totally natural and reasonable by the authors, but which may be violated in the real
world.

('t Hooft, 2002, p. 309)

The seeming conflict of quantum mechanics with local realism appears even more
dramatic if state vectors of the form

1
— (HoHoH+VVeV)

V2

(Greenberger- Horne-Zeilinger states) are considered (Pan et al., 2000).

5.3.3 Quantum Teleportation

As discussed in 5.3.2, the internal quantum state = W_ of the EPR pairs exhibits
correlations which are incompatible with local realism.

Even without deeper insight into the origin of these correlations they may be
exploited for new technologies:

Their use for preparation of single-photon states with prescribed polarization J

Draft, November 5, 2011

2 See (Aspect, 2004),(Kaltenbaek et al., 2003), (Simon and Irvine, 2003), and
(Rosenberg et al., 2005) for experimental checks. For classical light, of course, the corresponding
BELL inequality is fulfilled.
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\L laser pulse

was already mentioned:?

N BBO
N J
N
BSP = selection ——= 73
L7 1 2
4 /
e Jl /
K y
D _7 info
destructive measurement e
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An especially valuable application is quantum teleportation, basing on the

identity
2JQV_ =0, U J+V, U, J+0_@UsJ+0_@U,J
where: .
def 1 0 0 1
vt 5 6) e (0)= ()= )
def 1 1 1 0 0
v 5 (0) ()= ()= (1))
(_g) for j =1,
—« .
) det ( 5) for j =2,
S\s) Ty (e
( ) for j =3,
!
—(g) for j =

Outline of proof: With the identification
((I)la (I)Qa (1)33 (1)4) - (q)-l-? \II—H (ﬁ—a \II—)

we have
P, =Jf;(N+I . ®@fTL) VJeC? je{l,...,4},

for the anti-linear mappings

2
) N (e, @), VJeC?,

v=1

Draft, November 5, 2011
2Gee (Migdall et al., 2002) for possibility to increase the efficiency of such sources.

(5.15)
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not depending on the choice of orthonormal basis {e1,es} of C?. This implies

(o, @1) G2 @)
= (P 01) (T05@ 0 H(H@) +38 500 4(40).))

(Po, @1) (I0 D) @ (10 1))
= (9, |I® f;(3)®; @ (fao f;)(I) VJeC? je{l,... 4}

Since {®1,...,®,} is an orthonormal basis of C? @ C? this together with
2(f20 f)A)=0;F Vje{l,... .4}

proves the statement. 1

Remark: Quantum teleportation correspond to the following virtual flow of infor-
mation:

Since the initial (internal) state of photon 1 was (the unknown) J , photon
2 must have ‘been’ in the initial state f;(J) if the result of the BELL mea-
surement on photons 1 and 2 was ®;. Then, because of the correlation
of photons 2 and 3 the resulting state of photon 3 must be 2 f4 o f;(J).
Therefore application of U ;1 turns the state of photon 3 into J.

This kind of reasoning has been elaborated into a remarkable theory.?

Since the four BELL states W.,®, form an orthonormal basis of C? @ C? we
just have to test in which of these 2-photon states states photons 1 and 2 ‘are’ (BELL
test) in order to know the transformation U; turning the state of photon 3 into the
unknown J :

BELL state
-~ Info J
"\
Bell test (A]j_l
J
Alice Bob

Once Alice and Bob share an EPR pair (photons 2 and 3) they do not need a
quantum channel any more in order to teleport the unknown initial state J of photon
1 onto photon 3. However, the necessary classical communication (from Alice to
Bob) of the result of the BELL test can only be performed with subluminal speed.
Note also that the BELL test destroys the original state of photon 1.

Draft, November 5, 2011
26See (Coccke, 2004, Theorem 3.3), (Abramsky and Coecke, 2004), and references given there.
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Conclusion:

If Alice and Bob have the possibility to order, store, and release partners
of shared EPR pairs then they can exchange unknown quantum informa-
tion (in principle) reliably without any chance for potential eavesdrop-
pers.

One possibility to implement a complete BELL test results form the following action
of (nonlinear) BBO crystals

1 /.
O, — (H’ + V') ,
* Typ-1 \/5
1 ~
U, o (H’ 4 V') .
= Typ-II \/§

According to (IKim et al., 2001) this may be exploited as sketched in Figure 5.5. If
detector the D, fires thenAlice instructs Bob to apply U;.

A severe problem of long distance quantum teleportation is the exponential in-
crease of photoabsorption (especially in optical fibers). In principle this problem
can be mastered exploiting teleportation of entanglement,”® sketched in figure
5.6.

Teleporting the correlations of photons 0 and 1, described by W_ , onto the pair
of photons 0 and 3 relies on the identity

2\/5\1,_@\1;_:24:((1)) ®¢+®Uj(?> - (?)@@@Uj(é)

J=1

following from (5.15), which we may also write as

4
U)o @ W )y = D 105), @ | (e 0;) v)
j=1

0,3

However, useful application of such methods requires the possibility to check
success of the necessary operations. This could be provided by implementations of
quantum nondemolition (QND) measurements of the photon number which are of
great interest by themselves.

One suggestion to implement such measurements for small photon numbers n is
Draft, November 5, 2011

2TWe are writing H’, V' instead of H, V in order to indicate doubling of frequency via conversion
of the pairs into single photons.

Z8See (Duan et al., 2001). Another theoretical but barely practicable possibility to fight absorp-
tion is described in (Gingrich et al., 2003).




120 CHAPTER 5. APPLICATIONS OF NON-CLASSICAL LIGHT

A
|
BBO-II

BBO'-11

45
1

N
45° D3

BBO-1
|

BBO'-1

AN

Figure 5.5: Possibility of a complete BELL test.

el
BELL state
\\ / __——__info }
¢ ’ S
Bell test Ujfl
0 1 2 3
Alice Bob

Figure 5.6: Teleportation of Entanglement
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described in (Munro et al., 2005):

0= a, (i) 0 )

r=0 — v ivesel
KERR medium } x E Q@ (&T) Q® e*° Q
= v
2 —
X = 67% e éTQ v=0 almost orthogonal
weak

Such implementations require extremely strong cross-KERR nonlinearities which can
be provided® by electromagnetically induced transparency (EIT), treated in 8.3.2.

Such nonlinearities can also be used to implement CNOT gates, i.e. 2-qubit gates
acting according to

H —<— H V —e— V

V(H) —&— H(V), V(H) —B— V(H).

One just has to construct a nonlinear phase gate (NS) acting according
A 2 R 2
(al—i—ﬁdL—i—v(dL))Q - (a1+5ag—y(ag))9.

Then the arrangement sketched in Figure 5.7 represents a CNOT gate. Here 2-
photon interference is exploited at the HADAMARD beam splitters.

Remark: For the detailed action of the (non-symmetric) HADAMARD beam splitters
see Figure 3.2 of (Liicke, qip).

The CNOT gate is also called measurement gate since it may be used for
QND measurement of the polarization of the target photon:*"

aV+fiH V%;}QV®V+BH®H.

Destructive ‘measurement’ of the (lower) ancillary photon (with initial state V)
yields an ideal test of the V-H alternative®' for the (upper) target photon.

Draft, November 5, 2011

2Gee (Ottaviani et al., 2006).

30Note that is acts like a copying machine if only the states V and H are allowed for the target
photon.

31Tests for general J-J | alternatives may be easily implemented by additional unitary single-
photon transformations.
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4 N =

Figure 5.7: Implementation of a CNOT gate.

Note that CNOT gates may be used to produce EPR pairs:

Wiy,
MDA

Already for this reason also indeterministic CNOT gates are of considerable interest
— if appropriate quantum memory is available.*> here indeterministic means:

The gate acts as desired only with a certain probability. However, proper
action is highlighted by some ancillary system (similarly to QND mea-

surements).
One possibility for implementing indeterministic gates exploits the following effect:*?

Draft, November 5, 2011

32Gee (Pittman and Franson, 2002) and (Liu et al., 2001; Juzeliunas et al., 2003;
Fleischhauer and Lukin, 2002; van der Wal et al., 2003) for possibilities of storing quantum
information.

33Gee (Sanaka et al., 2003).
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A beam splitter acting according to

a;(ki) V/Rjaj(ko) V1= Rjag(ke)

7 7
7 A
7 7
7 7
7 7
7 7
X | A |
N AN
A A
A A
A A
N\ N\
N\ N\

also acts according to

(alkn) ™ (abtn)) "ad o) ©

n+1

— i S (al k2))” (a;(kQ))” (ai(kg)m_“ (@;(kl))”“‘“ Q.

pn=0 v=0

(5.16)

where we especially have

Corme = ( {/R_l)m ( {/E)n_l <R2 (- R2)> (5.17)

corresponding to the two possibilities, sketched in Figure 5.8, for exactly one photon
leaving the lower right arm of the beam splitter and having polarization = H.
For m = 0, n = 1 and Ry = 1/2 equation (5.17) reflects the familiar 2-photon
interference:

001:0 fOI‘RgZ—

As indicated in Figure 5.9 the upper arms of the beam splitter can be considered as
input and output ports of an indeterministic VS’ gate in the sense that

as(ky) = state of the

success = { lower output of the beam splitter,

if an ancillary photon in the state as(ks) is used as lower input for the beam splitter.

For suitable choice of Ry, Ry two such NS’ gates can be combined with two
HADAMARD beam splitters and two HADAMARD gates to yield an
indeterministic CNOT gate as sketched in Figure 5.10.
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W)
W)
W)

W)

as(ky) — as(ky)
M)

as(ka) as(ky

Figure 5.8: Selected Transitions at the Beam Splitter.
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W)

Crn ¥

\/

N
N
; as (k) Q
as(k2)f @ \ ‘?

NS’

Figure 5.9: Indeterministic NS Gate.

Figure 5.10: Indeterministic CNOT Gate.
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The HADAMARD beam splitters act according to

v (al ) a ) — i) al ) ©
— %g((fli(lﬁ) +d1(k2)> (dg(kﬁ - &g(kﬁ)
— (k) + b)) (] ) — al () ) ) ©
v, %(a{(lkl)a;(kz)+a;(k1)a§(k2))Q
— Ty = = (al(ke) ab(ke) — ] (k) (k) 2.
0} (k1) aj (kz) Q
— %((a}(kl)m;(l@)) (k) — (k1)) ©

—y, %((a}(kg)z ~ (ahen) ) 0.

According to Figure 5.9 and equation (5.17) joint succesfull operation of both NS’
gates has the following effect on the relevant intermediate states:**

V. — C10 Co1 v,
~——
= YR R2(2Ra—1)

Uy +— c11 coo Yo ,
~——
=C10 €01

\Ifl — R1R2 \111,
~——
=C20 €00

\:[12 —

Ry (3Ry —2) W, .
————
=C02 €00

Since the two HADAMARD gates (without the NS’ gates but combined with the
necessary mirrors) form a balanced MACH-ZEHNDER interferometer (see Figure 3.4
of (Liicke, ¢ip)). The whole arrangement outlined in Figure 5.10, but without the
two HADAMARD gates, acts in case of success according to

{—RlRQ\If for cc H® H,

V= VLR for U L HoH,

if
— Ry(3Ry—2) = RiRy = {/RiRy 2Ry — 1) . (5.18)

Draft, November 5, 2011

34Equation (5.17) implies

clgp = \Jr/RlRQ s col1 = (2 R2 — 1) s C11 = Jr\/ Rl (2 R2 - 1) )
coo = VRa, 0 = Ri YRy, c2 = VR2(3Rx—2).
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Addition of the two HADAMARD gates, finally, converts it into an indeterministic
CNOT gate. The conditions (5.18) are fulfilled for

34+ /2 532
+7\/—%0.63, Rlz%—z

Ry = 0.1.

The corresponding probability for successful operation® is | Ry Ry|* & 0.0047 .

A crucial discovery by (Gottesman and Chuang, 1999) is the following (see also
Sect. 3.1.3 of (Liicke, ¢ip)):

BELL test| ~J BELL test| < J
_ 1Us] _ 1Yil
- I L - ary [771
U A U U
\1:,{ k fo,{
IS BELL test} ‘L BELL test}|- I

This suggests the following implementation of deterministic CNOT gate:

BELL test}

fany
A

G
Il

BELL test} -

Here an ancillary 4-photon state U™ is used that may be prepared by means of an
indeterministic CNOT gate according to*°

o
o

This, in principle, allows scalable quantum computing using only linear optical de-
vices, photon number resolving detectors, and quantum memory.

fan

N
S
S

Draft, November 5, 2011
35For a more efficient, slightly more complicated, implementation see (Sanaka and Resch, 2003).
36See (Knill et al., 2000; Knill et al., 2001) and (Ralph et al., 2002; Dowling et al., 2004).




Chapter 6

Coupling of Quantum Systems

Now it is customary to define the method of measuring physical quantities without
defining these quantities themselves. In fact we have no satisfactory reason for as-
cribing objective existence to physical quantities as distinguished from the numbers
obtained when we make the measurements which we correlate with them ... It would
evidently be philosophically more exact if we spoke of “making measurements” of
this, that, or the other type instead of saying that we measure this, that, or the other
“physical quantity” ... however, we can continue to use the old language, reinter-
preting the terms “physical quantity” and “dynamical variable,” and allowing them
to stand for the corresponding operator which fizes the nature of the measurement
under consideration.

(KKemble, 1937, Section 36b)

6.1 Closed Systems

6.1.1 States and Observables in the HEISENBERG Picture

In the HEISENBERG picture the physical state of a closed! quantum system is
characterized by a density operator p!' on its state space H — being a HILBERT
space — and a time-dependent injection

Q— PY(t)

of the (naively assumed) testable ‘properties’ () into the (orthogonal) projectors
P(t) on H such that:”

A1y def H I | probability for: “Q) at time t” to be
Pa (,0 ) - (p o <t)> N {conﬁrmed by optimal tests. (6.1)

Draft, November 5, 2011
'For a discussion of the applicability of the concept of a “closed system” (isolated system) see
(Leggett, 2001, Lecture 3).
2If every step of a test for ‘Q at time ¢’ is delayed by At then this amount to a test for ‘Q at
time t + At’. We do not yet require that @ refers to an instant of time.
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Remarks:

1. A density operator (statistical operator) is a positive trace
class operator p with
Tr(p) = 1
(see, e.g., Definition 8.3.19 of (Liicke, eine)).

2. The simplest density operators are those of the form
p=UNY] ,TeH,

Those states are called vector states and fulfill *
. . 2
Tr(,aP> :<@|qu>: HP@H (6.2)

for all projectors P on Heeld -
3. Every density operator p on Hgeq may be written in the form

[e.9]

ﬁzz v |¢1/ ¢l/ y ZAy:l:HqDHH VMENa
v=1 >

v=1

suggesting the following naive interpretation:*

The actual state is one of the vector states ¢1, ¢o, ... and
A, is the probability for this being ¢, .

4. Note that (6.1) is assumed only over a time interval during which
the system can be considered as closed. Thus, especially, the prepa-
ration of the state has to be done before this time interval; and
nontrivial tests (‘measurements’) — since inevitably changing the
state — are allowed only after this time interval.

5. More generally effects, i.e. bounded Operators A on H with 0 <
A <1, could be used” instead of the projectors PQ( ).

The (naive) idea behind (6.1) is the following:
° Jf’g(t) projects H onto the closed subspace corresponding to those vector states
for which “@) at time ¢” will be confirmed by every optimal test.

Draft, November 5, 2011

30f course, Tr(p) = 1 implies | ¥[ =1.

“In general, however, there is no unique choice for the states ¢, . See
(Timpson and Brown, 2005) in this connection.
5See (Davies, 1976, Section 2.2), (Kraus, 1983, §1), or (Busch et al., 1995) for the corresponding

physical interpretation.
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o ﬁf’g(t) ey Pg(t) projects H onto the closed subspace corresponding to

those vector states for which “Q) at time t” will never be confirmed by any
optimal test.

R 2 R 2
e Since || P (t) \I/H + H—Pg(t) \IJH = 1 it seems natural to interpret

A 2 A
Hpg(t)\yH :Tr(|\ll><\II|Pg(t)>
as the probability for “Q at time ¢” in a state described by pt = |U)(¥].

e This motivates (6.1) for vector states.

e Due to linearity of the trace this implies (6.1) for states represented by density
operators of the form

=" o (U0, DY p=1, (6.3)
VZO\ZT)-/ v=0

if.% for every v, p, is (naively) identified with the probability for the system
to be in the vector state corresponding to W, .

e Since every density operator can be written in the form (6.3), thanks to the
HILBERT-SCHMIDT theorem (see, e.g., Corollary 8.3.18 of (Liicke, cine)), this
implies (6.1) for all states.

There is a one-one correspondence between self-adjoint operators A (see, e.g., Defi-
nition 8.3.7 (Liicke, eine)) and families {Ej\“} of projectors fulfilling the following
AR

requirements (see Theorem 8.3.24 of (Liicke, cine)):

1.
(A1§A2 — <quEf1w>§<m|EA2w>> YU eH, M, ER.
2, B
lim <\IJ|E§‘\IJ>:O YU eH, AeR.
€——00
3. B
lim <\1/|E§‘\1/>:<xp|x1/> YU eH, NeR.
€E—+00
4,

lim <W|E§+€W>Z<W|E§w> YU e, \eR.

e—~+0

Draft, November 5, 2011
6See also Section 6.2.2 and (Zch, 2000) for mixed states arising for subsystems from vector
states of a composed system.
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DA:{\IIGH: /1A|2d<11/|E“§\11><oo}.

<qf|Axp>:/Ad<qf|E§m> VU eD;.

Therefore self-adjoint operators are interpreted as observables of physical quanti-
ties — like ‘energy at time ¢’ — in the following sense:

Tr(ﬁH E’f) _ {probablhty for: “A € (—o0, A]” to be

confirmed by optimal tests.

Consequently:

Tr (ﬁH fl) = expectation value of A in the state = pt . (6.4)

Projectors are just observables of physical quantities for which only 0 and 1 are
‘possible values’.

6.1.2 Time Evolution and Projective Measurements

For a closed quantum system the time evolution is assumed to be given by a self-
adjoint operator H called the Hamiltonian of the system, in the sense that

~

PRty = et T PH(0)e it VieR (6.5)

holds for all ‘testable properties’ @ .

Remark: See, e.g., (Liicke, 1996, Section2.5) for a justification of this assumption
and Definition 8.3.30 of (Liicke, eine) for the definition of functions of self-adjoint
operators.

This allows switching to the SCHRODINGER picture

s 5s\ _ | probability for “Q) at time ¢” to be
1r <p ¢ PQ) n {conﬁrmed by optimal tests, (6.6)
where
A5 def i fy H iR
p; = e nitpletntt, (6.7)
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Note that, formally, (6.7) is equivalent to the LIOUVILLE equation

0 N
h iy = |1 6.9
ih = pi YA (6.9)
— to be suitably interpreted.
If the Hamiltonian is of the form
H=H+V (6.10)

with e~ # 20t known and V ‘small’ in some sense then it may be convenient to switch
to the interaction picture

g Al | probability for “Q) at time ¢” to be
I (pt PQ(t)) N {conﬁrmed by optimal tests, (6.11)

where
P T P e e (6.12)

The reason will become evident in Section 6.1.3.

For simplicity we require that for every ‘testable property’ () there is a projec-
tive measurement, i.c. a test changing the HEISENBERG state according to’

e pa () 285+ (1= pae()) . (6.14)
with R A
e Py ()t Py (t)
Qt — « -
Te (PY (0 PA ()

describing the subensemble of all those individual systems for which ‘@) at time ¢’
has been confirmed and

s P05 P (0
“Q7t - A A A ’
T (P, (1) P (1))

describing the subensemble of all those individual systems for which ‘@ at time ¢’ is
denied by the test. This assumption is consistent in the sense that

Tr(p") = Tr(p@t () .+ (1= pa (ﬁH))ﬁEQ,t) -

Draft, November 5, 2011

"Recall (6.1).
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Note that

DQ' t (ﬁH) = pQ’,t(pQ,t (ﬁH) ﬁSt + (1 — Pt (pAH)>ﬁI;IQt) vt

since
Tr (;3 A) _ (A ﬁ) (6.15)

holds for all trace class operators p and all bounded operators A . Therefore ‘testable
properties’ ), @' with commuting Pg (t), Pg/ (t) are called compatible.®

6.1.3 Time Dependent Perturbation Theory’

In the interaction picture the time-dependent density operator (6.12) fulfills the
differential equation'’

d .
b= [V, (6.16)

dt -

where ) S o
Vi) & etn oty ot (6.17)

(6.16) is (formally) equivalent to the integral equation
N Al i Loy Al /
pr="ro— 5 [V (t),pt/} dt

0 _

which may be solved for given p}, by iteration

~ def .
ploE=
L (6.18)
ﬁi”) def Po — %/ [Vl(t,),ﬁg/_l)} dt’ forv=1,2,...
; _

and taking the limit!'*

Draft, November 5, 2011

8Note that

PY(0), Pg,(o)}i -0 &= ([Pg(t), PR(t)] :0VteR> .

9In this subsection we do not care about mathematical details since even for a divergent per-
turbative expansion the lowest order may provide useful results.

10Compare Equation (6.9).

HFor simplicity, we do not specify the type of convergence.
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if Vl(t) is ‘sufficiently small’. For typical applications the approximation

RO a0 e R
pma = - / V), ph] ar
| .

—h2 /Ot (/Ot {f/l(t’), [f/l(t”),pg]_} ) dt”) dt’

is good enough. Note that, thanks to (6.15),
Ppy=phP=0

= n(pPP) =t [ (g p)arar. 19
[0,¢]x[0,¢]

This is in agreement with DYSON’s perturbation theory for state vectors.!'?

6.2 Bipartite Systems

6.2.1 Composition of Distinguishable Systems

Let §; and S, be distinguishable quantum systems not interacting with each
other. In order to describe S; and S; together as a single quantum system S in the
HEISENBERG picture one takes the state space H = H; ® Ho, where H; resp. Ho is
the state space of S; resp. Ss.

Remark: See, e.g., Section 8.4.2 of (Liicke, eine) for the definition of the tensor
products ® .

The Hamiltonian of S is X A .
H=H ®1+1® H,, (6.20)

where H, resp. H, is the Hamiltonian of S; resp. Sy, and therefore
et Ht (Pg(()) ® P32(0)> e it = P ()@ PL(t) VteR (6.21)

holds for all ‘testable properties’ ()1 and ()2 of Sy resp. Ss.
If the HEISENBERG state of S is given by
P =P @ py (6.22)
then A A ) X
Tr (ﬁH <P§1 () ® P&(t))) — T (,alf P (1) ) Tr (,35 Py (1) ) .
This suggests the interpretation
“H [ HH ~H | probability for: “Q; and @) at time t”
I <p (PQl(t) © Fo, (t)>> N {to be confirmed by optimal tests. (6.23)

Draft, November 5, 2011

12Gee Appendix A.4.
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As long as (6.20) holds (6.23) is equivalent to

s (DS S | probability for: “Q); and @), at time t”
I (pt <PQ1 ® PQ2)> n {to be confirmed by optimal tests, (6.24)

thanks to (6.21). However, if an interaction between S; and S, is introduced, cor-
responding to the addition of a perturbation

VAVI@l+loW VI, W (6.25)

on the r.h.s. of (6.20), then (6.21) is no longer consistent for all @1, Q2. Then we
try to keep (6.24) for as many Q1, @ as possible.'?

Even for the restricted class of @1, Q)2 do correlations arise, i.e.

R R ig. ~ N o A
Te(pf (P, @ 05,)) # Te(of (5, 1)) me(of (12 £5,)),
since:

Even if the SCHRODINGER state at time 0 is factorized, i.e. if
ﬁg = ﬁl & /32 )

p3 is typically not even separable'* for t > 0.

Correlations of subsystems also arise for classical systems. But:

The subsystems S;, Sy of § should be considered as classically cor-
related at time t only if p} is separable (Werner, 1959).

6.2.2 Partial States

Now let us consider a bipartite system & as described in 6.2.1 and ask only for
properties ()1 of the subsystem S, i.e. for the partial state of S; given by the

mapping
(@u.t) — Tx(pF (B3, 1)) = {

Draft, November 5, 2011
3Problems arise whenever the relation between two observables depends on the dynamics; a
typical example being the observables of position and velocity.
1A (momentary SCHRODINGER) state with density operator p is called separable if for every
€ > 0 there exist N € N, pq,...,py > 0, and density operators pi,,,..., P2, Ny With

probability for: “Q); at time t”
to be confirmed by optimal tests.

N
[3 - sz/ )él,l/ ® ﬁQ,IJ

v=1

Tr < €.

Otherwise the state is called entangled.
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One may show that (for every t) there is a density operator Try ([Bts) on H; , called
the partial trace of p} w.r.t. Hy, for which

(55 (P5, @1)) = Tr(Tea(6) £5,) V. (6.26)
Obviously, Try (ﬁts) represents the partial SCHRODINGER state of S; at time ¢. But:

Even if p represents a vector state of S its partial trace w.r.t. Hy usually
does not represent a vector state!® of S; .

Moreover, the interaction between S; and S, has to be very special'® for all the
Try (ﬁts) with ¢ > 0 to be determined by Tr (f)g) , at all. Usually, therefore, the
HEISENBERG picture does not work for subsystems.

6.2.3 Composition of Indistinguishable Systems

Two quantum systems S;, S, are called indistinguishable if they may be de-
scribed in the same way, especially with

Hi=Hy, Hi=H, {Qi}={Q:}.
Then there is a natural decomposition
HiQHy=H"®H ™,

where H? denotes the HILBERT subspace of H; ® Hy generated by all vectors W of
the form

U= @Pa+0ova@t¢1, 1,92 € Hy,
and the composition described in 6.2.1 has to be modified in the following way:'"

1. The state space of the composed system is H? with o = +resp. 0 = — if &7 is
a Boson resp. a Fermion.

2. Only those properties of the composed system can be considered as ‘testable
properties’ which do not depend on the enumeration of the subsystems. Thus,
for instance, if Q1 # Q)2 are compatible properties of S; then

(‘Ql for 817 A ‘QQ for SQ’) V (‘QQ for 31’ N ‘Ql for 82’)
is a ‘testable property’ of the composed system represented by the projector
HS S HS S pS PHS AS  PHS o
(PQI ® PQ2 + PQ2 ® PQl - <PQ1 PQ2> ® (PQl PQz))/\H
in the SCHRODINGER picture. But
‘Ql for 81’ A ‘QQ for 82’

cannot be considered as a testable.

Draft, November 5, 2011
5The evolution of an initial partial vector state into a mixed state is called decoherence.
16See Section 6.3

17Here we assume V = 0, for simplicity.
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3. The Hamiltonian has to be replaced by
(ﬁ1®i+i®ﬁ2+f/> MHE
with V leaving H? invariant.

Recall that particles with integer spin like photons are Bosons while particles with
half-integer spin like electrons are Fermions.

For multipartite systems and the possibility of parastatistics we refer to (Ohnuki and Kamefuchi, 198:
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6.3 Open Systems

See (Davies, 1976; Kraus, 1983; Carmichael, 1993; Alicki, 2003).
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Chapter 7

Perturbation Theory of Radiative
Transitions

Being able to predict things or describe them, however accurately, is not at all the
same thing as understanding them.

(Deutsch, 1997, p. 2)

7.1 Single Atoms in General

7.1.1 Naive Interaction Picture

Let S; be a single 1-electron atom with approximate Hamiltonian®

-9
m

acting on Hapom = LQ(R3) and let Sy be the electromagnetic radiation system with

state space Hgeaq and Hamiltonian

A 1 A . 1 . R
Hiaq = 5/ (eo 'E(x,0)-E; (x,0): +— : B(x,0) - B(x,0) :) dV,
Ho

where E | (x,0) resp. B(x,0) denotes the observable of the electric? resp. magnetic
field at time ¢t = 0.

Draft, November 5, 2011

'We assume that the atom’s center of mass fixed at x = 0 and neglect spin-orbit interaction
and the like. ¢ < 0 is the electron’s charge, m > 0 its (reduced) mass, ¢ ~ 3-10~%cm the velocity
of light in vacuum, and cA%(X) the electric (binding) potential of the nucleus. Pea, denotes the
electron’s canonical momentum operator and X its position operator:

_h o
T Ol

(Blan ¥) (%) (), (@7 9) (x) =2 P(x).

2Note that only in the absence of charges the total electric field E(X,O) coincides with its
transversal part E | (x,0) (recall Footnote 33 of Chapter 1).

139
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Agreement: From now on we identify operators B on Hatom With the
corresponding operators B® Laierd 00 Hatom @ Heeld - Similarly we identify
operators C on Hiea with the corresponding operators Latom ® C on
Hatom ® Hﬁeld .

Since the interaction between S; and S, cannot be switched off let us consider
these systems as components of a closed bipartite system, as described in 6.2.1, with
minimal coupling®
= _i (Iscan : A ()AC, 0) + A (}A{a O) : pcan)

2m
9 (7.1)

q NPT
— A 0):
+2m (%,0):,

where we assume that the naive interaction picture works, i.e. that the state space
and the time zero fields E, (x,0), B(x,0), A(x,0) can be chosen identical with
those of the free theory described in 1.2.2.

Warning: Actually, as stressed in (Hoffmann, 1994, Sect. 3.5), V is not

well-defined. This is a simple consequence of the equations
AP (31, t0) AP (o, ta) = A (x1,t1) A (xa,12): 72
7.2
(] A (x1, 1) A (52, 12) )

and
(1 48 (a1, t0) A (2, 12) )
= (ol Ve, ()| o)

k»jl k]2 B dV
2 h O — ik(x1—x%2) —z clk|(t1—t2) k
5 7 “06/(h” ) 27K|

[k|*
A (7.3)
for the free field operators Ag(x,t). Therefore we should replace A(x,0)

by /Ao(x—y, 0) o(y) dy with ¢ € S(R?) (introduce a ultraviolet cutoff

(1.71

this way) and determine the limit dynamics for ¢ — §. However, we are
not going to elaborate on such mathematical details.*

Draft, November 5, 2011

30ur notation should be understood in the sense that, e.g.,

(W ox A0 @ex) D [(16) ve0 (¢ 1460 ), dv

holds for sufficiently well-behaved ¢ ® x, ¢’ ® x’ € H. See (Simon, 1971) in this context.
4See (Frohlich et al., 2003) for such techniques.
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Remark: (7.2) is a special case of WICK’s theorem; see, e.g., Sect. 3.2.1 of (Liicke, ¢ft).

Now the time evolution of the composed system is generated by the total Hamilto-
nian

]:I - ]:—’atom + ]:Iﬁeld + V (74)
1 . Ao 2 R -
= = (Bewn — 0 A%, 0)) "+ + geA(%) + Hso (7.5)

. def i [ =~
~ o ' £ [7,5]

For (sufficiently well-behaved) vector states the dynamical law (6.7) suggests
validity of the SCHRODINGER equation®

m%xpt:ﬁ\m VteR, (7.6)
where pF = |U,) (W] .
Remark: See Section 9.1.1 of (Liicke, cine) for arbitrary vector states.
Assuming®
ﬁ;tﬁftf@ Xt } VieR (7.7)

and taking the inner product of (7.6) with ¢/ ® x, gives

/ (w’(x))* ih %wt(x) v,

= (Wox|ins weex))— @ v (x|in S x)
o (e e x)) = ! v (it < x)
(7‘4;7.1) <1/1/ | Hatom 1/Jt> + (' | ¢t><Xt (I:—,ﬁeld —ih %)Xt>

_i <¢,(X)> ) (f)can : Aext (X, t) + Aext (X> t) : f)can) wt (X) dvx

2m
w2 [ (v0) (n

Aext(X7 t) déf <Xt | A<X7 O) Xt> .

;A2(x,0);Xt> be(x) AV,

where

Draft, November 5, 2011
5Note, however, that the time evolution of P9 — contrary to that of ¥; — is not changed by
addition of a constant to H .
6This possibility seems reasonable for coherent states xg; see end of 7.2.1.
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Since ' is arbitrary, this establishes the exterior field formalism

ih %wt(x) ~ (% (;V — qAox(x, t)) + qcAP  (x,t) + chO(X)> (%), (7.8)

if (7.7) holds,

with suitably defined A2, (x,t). We postpone the discussion under which conditions
(7.7) is reasonable.”

7.1.2 Electric Field Representation®

Let us choose some ¢ € S (R?) with

o(x) = (p(x)) ~o(x) (7.9)

and exploit the WIGNER symmetry corresponding to the unitary operator

7o (~gax- [Aw0)p)dy) . (7.10)
Remark: See.e.g., Section 8.3.4 of (Liicke, eine) for the notion of WIGNER symme-
try.
This means that all operators B have to be replaced by

~ def

AdyB=UBU™! (7.11)

without changing the physical interpretation. The new observable for the transversal
part of the electric field, for example, in the SCHRODINGER picture is now

A R 1 .
Ady B, (x,0) = E,(x,0) — = P(x), (7.12)
€0
where
5(0) oy def & ) ~ -
1 (X) = €0 ; CIZL'] ﬁ / |:A] (Y7 0)7 EJ_(X7 0)] B SO(Y) dy . (713)

Proof of (7.12): As usual, we (formally) define

ad, B[4, 5]

Draft, November 5, 2011

"See (Gemmer and Mahler, 2001) for the case of bipartite systems with finite dimensional state
spaces.
8Here we follow (Cohen-Tannoudji et al., 1992, Appendix 5), to some extent, rather than

(Mandel and Wolf, 1995, Section 14.1.3). See also (Scully and Zubairy, 1999, App. 5.A) for the
corresponding exterior field formalism.
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Then (1.37) implies that ad;, ) E1(x,0) is a function of X and, conse-
quently,

(adln(f])) E, (x,00=0 VYv>1.
Therefore (7.12) follows from the CAMPBELL-HAUSDORFF formula’

Ad,4) B = exp(ady) B (7.14)

and

.3
A 7 s o ~
ady, i E1(x,0) = — qu]/ [Aj(y,O),El(x, 0)]7 o(y)dy . i
j=1

Similarly we get:

Adgx = %,
i< . N
Adgpin = D+ 3 o). [ 40y
— bow—aA(R0) 41 [ Aly.0)oly)dy (7.15)
Ad;B x,0 - B x,0),
B0 o Bo)
“ 1 “
AdgH = (AdgPrin)’: + gAY (%) + Hpaa

- / PO (x) - B, (x,0) dVj + —— (Pio)(x))Qde (7.16)

260

Proof of (7.16): According to (7.5) it is sufficient to show

AdpHan = Hroa — [ PO B (x,0)dVy + — [ (PO() d
o Hiield field (%) - Ep(x,0) Vx+2€0 1 (x)) dVk.

This follows from

N 1 N 2 1 N
AdUHﬁeld = 5/ (60 : (AdeEL(X, 0)) D+ % . BQ(X7O) 3) de

and (7.12). g

Draft, November 5, 2011

9Formally (7.14) is a consequence of the fact that Adexp( AA) B and exp (ad A\ A) B, considered as
operator-valued functions of A, fulfill the same first order differential equation and the same initial
condition for A =0.
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Note that (1.49) and (7.13) imply'”

P x) =0 Y ey [ =) ey dy- (7.7

J,j'=1
Since
[ o7 - % Bl v = Bly),
(7.17) implies

~

[ P06 B0 = ox- [ B30 0(v)dy

Substituting the latter into (7.16) we get

- 1 1 . 2 .
AdgH = (—:(Ady Pm)?: + qeA* (%) + — / (Pf’(x)) AV ) + Haug
2m 2€0

_g%- / B, (v.0)g(y)dy

(7.18)
Therefore we call the new representation, resulting from the WIGNER symmetry
transformation Ady, , the electric field representation.

Warning: The new observable of the (transversal part of the) electric
field is AdyE | (x,0) rather than E | (x,0). According to (7.12)/(7.13),
both coincide only ‘outside’ the atom.

7.1.3 First Order Perturbation Theory

Let us go back to the representation described in 7.1.1 which we shall call the
CouLoMB representation. Then we have

~ def 72 ~
}IO - Hatom + Hﬁeld

Draft, November 5, 2011
10The observable of the transversal polarization density is the operator-valued distribution

3
Pix) ¥ ¢ ey (x-x)

J,J'=1

3 .
= @) g % [47(%,0), B (x,0)
j=1
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as unperturbed Hamiltonian and

with V given by (7.1).
Let us consider the special case

ﬁ§ = Wox)wex,
P @)@y, (7.19)
Ppo = [’){)]5:0.

Then'!
p(Ox =Y X)
e (;g P)

2| [(pex V) we)ar

/0<¢t/ ®Xt/ |V( ®Xt/>>dt/
3

(314760 (3900) 7 20l () v

2

(6.79)

-  R2
(6.17)

+ f—m / (00 1 A206,0): 0 (907 00) 0l () v ) 2
Ot(—%/g <X | Al(x, t’)x> (%ﬁP)(X))* Zj% 9 (x) dv;

+% <>z|:(A>2(x t): >(¢t, (x ))*wgn(x)dvx)dt,

where we used

A(x,t) = et fraat A (x 0) e n Hreiat (7.20)
and

def i Y def i Y
t(O) é 6_% atomt¢7 ¢£0) é 6_%Hatomt¢’

(0) def i [ qt - (0) def
Xp = e niieldiy Xy =€

Draft, November 5, 2011

'Note that V - A(x,0) = 0.

— 7 Hpelat

X -
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N2
Usually <>2 | : (A) (x,t'): X> will be neglected:!?

pt(¢®x—>1/3® X)

/t</i (X186 1)x) (060) 229 () avz ) ar

if (7.19) holds.

2

~

m2 h?

(7.21)

For obvious FE‘:ELSOHS13

P ®x =P ®X) ﬂ(ﬁeﬁﬁwﬁ@ﬁﬁw>

(6.7, (6 12)

is called the transition probability for the transition of the SCHRODINGER state
= 7w Hot (4h ® x) into the SCHRODINGER state = ¢~ 7 o (1/1 ® )Z) at time ¢ .

In typical quantum optical applications also the approximation

/Z A1) ) (1000) BT u ) v,

*h 9 Lo
i Oz Tt

Q
\
)=
>«
e
=
ok,
~——
/N
hSS
N’

(x) dVi
O | Bean )

. <¢>§9> i [ﬁm,}z} o)
- AN (el

is justified. Substituting this into (7.21) we get the so-called electric dipole
approximation

nV@x 2 Y@x)
%A),tP Z < ’Ajl(o tl) >< |AJZ<O t2)X> 11]2(t17t2) dt, dtg,

J1,j2=1 (7_22)
in the COULOMB representation, where

e d 1T d 1 5]
(ot 2) & p? <d_tl <wt(?) | q&” wt(?)>) (d_t2 <1/1t(3) | g7 ¢§S)>) :

Obviously, the f-factor gives rise to selection rules:'*

<%9uﬁ¢9>ZOVﬂemﬂ — pex—Pdex)~0. (723

Draft, November 5, 2011
128ee (Mandel and Wolf, 1995, End of Section 14.1.2) for justification.
13Recall (6.6).

The Lh.s. of (7.23) is often implied by symmetries.
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Remark: Note that

A ig. .
(X1Ax0Q) 20 (=(2]Ax1Q)).
Therefore (7.22) may be non-negligible even for y = 2. This explains,

e.g., the occurrence of spontaneous decay® of excited atomic states in
the vacuum.

7.2 Photoelectric Detection of Light

7.2.1 Ionisation of One-Electron Atoms

Let us assume that the projection ]5ion onto the subspace of H,iom corresponding to
ionisation is of the form

Prn — / o(E,Q)

>0 ~—~——"
>0

BB, Q)Y (B, )| dE 2, (7.24)

where the ¢)(E, Q) are (improper) eigenstates of Hiotom :
I:Iatom QL(E, Q) = qu)(EV'a Q) :

be a maximal orthonormal system (MONS) of Hgeq . Then,

Moreover, let {X,}, ey

if
Hatomw:Ewa E<07

the probability pi°®(¢, x) for ionisation at time ¢ is
P (¥, x)

)

- Z/ o(E,Q) pi (¢ @ x = $(E,Q) @ X,) dEdQ

E>0
3

~ X | A7(0,11) A%(0, ) X> L7 (ty — t) Aty dty
(7.22)  Jio,2 Z < v

Ji,J2=1

v=1

where
Izj/}]é (tl N t2)
def L. .2 . o Ny
- /E>0 U(E’ Q) (E B E) <¢ | q ¢<E7 Q)><¢(E, Q) | q ' 1/}> )
> .6+%(E—E)(t1—t2) 44O

_ / o(E,Q) 15 (b1, 1) dE €.

Draft, November 5, 2011

15See, e.g., (Baym, 1969, Chapter 13).
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This together with (7.2) gives

P (Y, x)
3
/ S (A (0.0) A2 (0,12) ) B (1 — 1) by iy + i), T2
0,42 ;50
where
Vi) / Z (Q A7 (0,00) A2(0, 1) Q) F (11 — 1) dty dt
0,¢) J1,J2=1
k]lk]Q
e [ ().
(7.3) MO JMZQ1 s
- . avi
: 2 ( — ) e~ telklti=ta) g qp, | =X 7.26
</Ww (1) e ) g (120)
Since N N
<Q | :Aﬂ(O,tl)AJZ(O,tQ):Q> —0,
we have

V) x5, .0)

and, therefore, expect V(1)) to be negligible.

Additional consideration: By change of variables!'®

. t+t
(tl,tg)—>(7,t)df(t1 to, 1;2>

we see — in the typical case,'” that I Zb”é (7) is sufficiently concentrated around 7 =0
—- that

. . ol . t—| 3|
/ prm (t1 —t2) eielklti=t) g, dqt, = / (prm (1) e~ ielklr /| | dt’) dr
[0,¢]2 —t z

+t o ]
- / (t — |7]) T3 () e 617

/ ]1]2 7zc|k|7' dr

Q

OO
131]2 —zc|k\7— dr

Q

Draft, November 5, 2011

16Note that

(ti,t2) € 0,12 Ogt'i%gt PR ‘%’gt’gp’%’.

17See comments to (Mandel and Wolf, 1995, (14.2-13)).
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for relevant ¢. Together with (7.26) and
too
/ prlh (7_) efic|k|'r dr
= [ oB0) (BB (4| 0" SED)IED) | 00" v)-
> .</+°0 o+ (B—(B—helk]))r dr)dEdQ

=27 §(E—(E — he k)
———

<0

= 0
this implies V; (¢, x) ~ 0.

Therefore, by (7.25),

P (1), / Z X249 (0,0) (0,82 x ) (0 — )ty dty (7.2

[0.2)2 Ji,j2=1
for relevant t. Obviously,
for normalized coherent states y :
(X A7 (1, 1) A (x5, 1)1 ) = AR (1, 1) A (0, 83) (7.28)
where' A (x,1) o <X | Ad(x,t) X> .
Since, on the other hand,

Tr(ﬁi (Eon ® [x) <X\>)

oo

= > oABOn e HED %) B
1 JE>0
3 ~ A . .
~ X | Ajl (0, t1> X X | Aj2 (0, tg) X [‘71]2(751 - tQ) dtl dtQ s
(7.22) /[Ot} j1%::1< >< > ¥
we see that

P ~ T3t (P @ 1O ) )

This indicates that the following holds within the limits of our approximations:

If the (partial) state of the radiation field is a coherent one at time
t = 0, then the interaction influences only the time evolution of the
atom’s (partial) state.”

Draft, November 5, 2011

18Usually, the positive-frequency part A§<+)J (x,t) of A (x,t) is called the analytic signal asso-
ciated with A7 (x,1).
9Nevertheless the total energy is conserved thanks to the interaction term (7.1).
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Recalling the definitions of I f;b (t,—t,) and A(x, t) and interchanging integration
over t1,t, with integration over E, ) we easily see that (7.27) implies

3 . .
PR y) ~ / 3 <x\ A7 (0,4) A (0, 1) x> 72ty — o) dty dt
0.4

Ji,J2=1

(7.29)
for sufficiently well-behaved states x .

7.2.2 Simple Photodetectors

A typical photodetector consists of an assembly of ‘atoms’ to be ionized by the
incident radiation. The electrons thus emitted from the ‘atoms’ are counted.?’ In
the following by ‘ detector’ we always mean a photodetector of this type.

First of all, let us consider the special case that the radiation field is initially in
a coherent state y (in the interaction picture). Then, as we have seen, this state
remains essentially unchanged by the ionisation processes. Therefore the above
considerations of the previous section make it plausible?! that the counting rate at
time ¢y of such a detector, localized at xg, is

P (%o, to)

) i . . .
=~ (a / Z <X A(—)] <X0> t1> A(+)J2 (X07 tQ) X> K712 (tl — t2> dtl dt2> ,
[to.to+t]? j, jo—1 lt=0
(7.30)

where Kf;jz (t; — t9) is a characteristic function of the detector.

Remarks:

1. Here, by ‘counting rate at time ;" we mean the production rate
for photoelectrons at time t5. Of course, actual registration needs
some extra time.??

2. Strictly speaking, in (7.30), we should not use the derivative w.r.t.
t at t = 0 but rather choose some ‘relevant’ ¢ and divide by this
t. This is because pi®®(1,x) becomes proportional to t* for too
small t.

3. Generalization of the latter is also the reason for the so-called quan-
tum ZENO effect:*

Draft, November 5, 2011

20 Actually, what we mean by ‘atom’ here is an electron bound in some photosensitive material.
Tonisation of ordinary atoms would require frequencies above the optical domain.

2See (Mandel and Wolf, 1995, Sections 414.2-14.4) for further details.

28ee, e.g., (Paul, 1995, Chapter 5).

See  (Lynds, 2003) for ZENO’s paradoxes and, concerning quantum mechanics,
(Misra and Sudarshan, 1977).
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A quantum mechanical system does not change its state as
long as it is permanently checked, by ideal tests, whether
it is in this state.

4. Justification of (7.30) as a consequence of (7.29) is not as straight-
forward, as usually tacitly assumed:
(7.29) is the probability for finding the atom ionized if measured
at time ¢. So in order to relate (7.29) to actual ionisation we have
to assume that such measurements automatically occur at random
times. However, these ‘measurements’ must not appear too often
in order to avoid the quantum ZENO effect!

In typical cases we may substitute 1172 §(t; — to) for K772(t; — to), where 7172
describes the efficiency of the counter (slowly varying with the frequency range of
the radiation field). Then (7.30) becomes®*

3 . .
Propi(Xo,to) = > <X‘fl(_)]1(xo,to) A (0, t0) X ) 171 (7.31)
jlaj2:1
Now let us consider n detectors located at the positions x1,...,%, and define

the corresponding probability density *°

det [ O 0
P‘XMX‘(Xl,tl;...;thn) = (8_771.”825/ px(Xlatlatp~-§thn>tn)) )

‘t’l:.:zglzo

for the radiation field being initially in the coherent state y , where p, (x1, 1, %];. . .;

X, tn, 1)) is the probability for the following effect:*

Forall v € {1,...,n} the detector localized at x,, ‘clicks” during the time
interval (t,,t)) .

Then, assuming that the coherent state suffers no relevant changes by the detectors,
we get by (7.31)

P|x><x|(X17 tl, Ce Xy, )

=TT 50 (A et A )

V= 1]l,j’ 1

-y

J1sesdnsdt s dn=1

A A A

Al )]1(X1, ty)- - A (X, tn)A(”j" (X, 1) -+ -

AT (Xh 751) X> 77{1]1 e '77#]'; )
(7.32)

Draft, November 5, 2011
24Recall Footnote 16.
Z5Here Remark 1 to (7.30) applies accordingly.

*For instance, Py (x1,t1;Xa,t2) is measured in the HANBURY BROWN-TWISS experiment; see,

e.g., (Mandel and Wolf, 1995, Sections 9.9, 9.10, and 14.6.1).
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where, for v € {1,...,n}, the n/172 characterize the efficiency of the detector local-
ized at x,, .
Since Pjy(xi,t1;...;X,,t,) — to be defined for general p' accordingly®” — is

linear (and suitably continuous) in p' Theorem 1.2.2 tells us that

PﬁI(Xl,tl; c ;Xn,tn)

= ]&13(1)0 pn(ag, ... ,ozN)Pq)al """ - (x1,t15. .. ;thn)T e
holds with suitable functions py with?
pl=Jlim [ py(on,...,on) [Py, ax ) Pay...an] % e dO‘TN : (7.33)
This together with (7.32) and the optical equivalence theorem gives
P[,I(xl,tl; - ;X )
~ S m </;I A (x1, 1) - A (x, 1) A (30, 1) - - -

j1,...,jn,ji,...,j§z:1 .
A )
(7.34)

Draft, November 5, 2011

2TFrom now on we denote by p' the density matrix of the (partial) state of the electromagnetic
field — rather than of the total system — in the interaction picture.

281n spite of (7.33), p' need not be an ordinary mixture of coherent states, since the py need
not be nonnegative functions.

29 Admittedly, this argument involves an interchange of limits that ought to be justified.




Chapter 8

Semiclassical Treatment of
Few Level Atomic Systems

8.1 The Exterior Electric Field Representation

Let us recall the exterior field formalism for a single atom as introduced in 7.1.1:

The atom’s state space is
Hatom - L2 (R37 dSX)
and its free Hamiltonian is
. 1 (h_\°
Hatom = 5 (TVX) + qCAgtom(X)
2m \ 7 —_————

Bindungspotential

Interaction with the (optical) radiation field is introduced via minimal coupling:'

. . « 1 (h ’
Hatom — Hs(t) d:f % (?Vx - quxt(X> t)) + qCAgtom(X) .

As usual, we evaluate the SCHRODINGER equation

d
i h = H ()

only in the so-called dipole approximation

AS(1)(x) = (i (@.vx—un)) +ch2wm<x>> (%),

2m \ 1

where

Alt) € Aue(0,t) VEER.

Draft, November 5, 2011
'Here we use the SCHRODINGER picture.
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By change of representation

Py = Gy o U(@ﬁ%

where .
Ut) & emraxa®

Y

the SCHRODINGER equation (in dipole approximation) becomes

.0 :
1h a N (X) ~ Hcl<t) (o (X) )
2 def w?
Where:2 Hcl(t) == _%Ax —gx: E(t> + qCAgtom<X) ) (81)
0
Et) ¥ —ZA .
(t) ot ext(07 t)

Warning: Recall that — strictly speaking — the usual interpretation of
h? 0
7%Ax +4q CAatom(X)

as observable of the energy of the atom is not correct.?

8.2 2-Level Systems

Let us assume that (within the considered time interval essentially) only a ground
state |g) and an ezcited state |e) are occupied® corresponding to the energy eigen-
values Eg, E, :

Hotom 8) = Eg 1), Hatom |e) = Ecle) .
Then, because of
Phtom (1) = p;.[g())m(t)ﬁzsitom(t>PH'(2) )’
restriction to the 2-dimensional subspace

Hi () < L ({le)1e)})

Draft, November 5, 2011

2Note that:

L0 - 0 - ~  h A4 R

ih D00 = (ax AWM ) U0 0, 00 w00 ="t gan).
3See also (Scully and Zubairy, 1999, 5.1.3) and (Shore, 19902, End of §3.11).

4For simplicity we assume that interaction with the electromagnetic field does not change the
level scheme.
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of Hatom 1S adequate:

» Matom

Lod o A R
i ()~ [P0, 6m(0)]

> ~ 2
def P’H(Q) pgtom t /\H( :

Spur < H(Q) patom( )
(2 def 2
HP() < Py 1 <>M§t2)m

W.r.t. the basis

we have
el = b < (] o)
el = 0 = (o o)
el = b = (4 o)
el = bt = (g V)=~
and hence

~

AP (M) = Eele)el + By lg) (8l - aPye

om (1)
= hwoi)T B + Eg 70 _qPH<2)
N—— at,

om (t)
irrelevant
where:
w def E E
0 —h .
For
Eext (X> t) 0 )
because of 0 X
bo="""
2

. h E,+FE, .
AP() = 0504 S
———
irrelevant

and the LIOUVILLE equation (8.2) simplifies to

d hwy .5 .
i () = |5 0]

S
—
S

X - Eext (Xa t)/\H;%BJm (t)
X - Eext (X7 t)/\H;%BJm (t) )
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(8.5) can easily solved by means of the BLOCH representation’®

1 .
Fim(®) = 5 (7 +x(1) 7). (8.6)
2 —~—
€R3
Here
odef (1 0O cpdef (01 <o def 0 — g def (1 0
7_(0 1)’ 7_(10 A N A (1) A W I
(8.7

are the well-known PAULI-matrices® — forming an orthonormal basis of B (H,,)
w.r.t. the HILBERT-SCHMIDT norm and obeying the relations

~

prav — ] Vv e {0, 1,2,3} ]

Figk = _pkpi ke {1,2,3},5#k,

fa s (8.8)
7A'27A'3 == 2'7217

Pl = 72

(see, e.g., Section 7.2.2 of (Liicke, cine)). In this connection let us note that

#3 =0T — bbf = 2bf0 — 70 (8.9)
where the FERMI annihilation operator
/\1 . ,\2
podef TW — 1T 0 0
p — = (1 O) (8.10)
acts as X R A X
blg) =0, ble)=1g), blg)=le), blle)=0. (8.11)
and fulfills the canonical anti-commutation relations
[6, lﬂ — 70 [6, 13] —0. (8.12)
+ +
In the BLOCH representation (8.5) is equivalent to
h
ibk(t) -+ = —2x(t) [ 7]
h 1/ 22 20 Al
= 15w x(t) 77 — x°(t)
h .
= iguwoes (x(t) X ‘r) ,

hence also to

1.e.:

The BLOCH wvector x(t) rotates” with constant angular frequency wy es .

Draft, November 5, 2011
5See (Leggett, 2001, p. 8) for generalization.
6 A widespread notation is o, instead of 7V .
Since spontaneous decay was not taken into account.
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8.2.1 Interpretation of the BLOCH Vector

Obviously, positivity of ﬁé%lm(t) implies

det (pa(1)) 2 0

and hence
x(t)| <1,
since ]
det (ﬁggm@) = det(— <%° + x(t) r))
(8.6) 2 ~~
€R3
1—|x(t)”
- 4

Since, moreover,

Phiom(t) Projector

<
<~
<
we conclude:

pure state if |x(¢)] =1,

~(2) i
Patom(t) describes a {mixed state if |x(¢)] < 1.

Especially we have

1 N Sllrrllg Cior?go S cos? % Te7¢ sind
2|7 i SHLy T = Letio gin g sin? 2
cos v 2 2
B e i% cosg e i cosg
- etis sing etis s1ng
and®
. def 1, .
Px = 5 (7’ + X 7')
1+ x| . 1— x| .
= 5 Pt by VXE R?\ {0} . (8.13)

Draft, November 5, 2011

8The vector x characterizing py is called BLOCH wector resp. STOKES wvector if p describes
electron spin resp. photon polarization. The set of all normalized BLOCH vectors resp. STOKES
vectors is called BLOCH sphere resp. POINCARE sphere. In both cases |x| is called the degree
of polarization.
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Furthermore, we have

Pt = iy = () = R(g (gl x[e) ) #(1) + S (g (gl x[e) ) 2*(1) | (8.14)

ﬁL def ]5 (2 ()XP (2)

atom atom (t)

denotes the observable of the atom’s electric dipole moment (truncateded to Hatom( ).

Outline of proof for (8.14): The statement follows from

IO (ﬁ;%zm )

and )
T (75) = T () -5 T (+7)
= elfieg,
Tr(TBT) = e +e ]

8.2.2 Rotating Wave Approximation
For E(t) # 0 we have

)A(E(t)p @) :ﬂ'E(t).

P (2) Hatom( )

atom (t)

This, together with (8.2) and (8.3) implies

Lodo TP .
ih 4 Paom (1) ~ (o b1h — o+ B (0,1), pinn(8)] (8.15)

In case’ '
Ee(0,1) ® Ee"“ +c.c. (8.16)

it is easier to determine

W(8) e (@) e

F

for which (8.15) implies
d _— A
ih = pu(t) [h (wo = @) B0 — i, (1) - Eexe(0,1), pult)]

Draft, November 5, 2011

9In (Mandel and Wolf, 1995, Eq. (15.3-9)) E(t) is allowed to vary slowly with time.
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where
" def  41iwbtht » —iwblbt
p,(t) = e e .

Usually the conditions
(glx|g) = (e|x[e) =0
are fulfilled.'’ Then o o
e+¢wabt564wabt pheiwt

(8.12)

implies

fi,(t)  Eeu(0,4) = (q<g\x\e Be—iwt+h.c.)-(5e—wt+c.c.>
= (q(g '8*B+h.c.)

+ (q (g|x|e) - Ebe 2wt 4+ h.c.) ,

X [e)

Xe)

and this is usually replaced by the so-called rotating wave approrimation '
fi,(t) - B (0,) ~ ¢ (g| X |e) - E*b+ h.c..

All approximations together result in the equation

d N
L 4o ~ . 17 A
ih — pu(t) ~ [h(wo —w) b1 — <Qb+ h.c.) ,pw(t)]_ ,
where!? 5
def q ~ *
K20 g ko) - £

For suitable choice of the origin of the time scale we have

Q=19 RABI frequency

and, in the BLOCH representation

this implies

U
W) 7 = %f0): B =B T (+17) 7

Draft, November 5, 2011
OEspecially if |g) , |e) are parity eigenstates.
HFor exact solutions of related problems not using the rotating wave approximation approxima-
tion see (Angelo and Wreszinski, 2005) and (Chen et al., 2010).
2Note the used convention: Eey(0,t) = R(2Eew1).
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Using

%[%f,ﬂ_:ej X+ Vje{l1,23) (8.17)

we conclude that!'3

Xw(t) = QA X Xw(t) ,
where:

with
A Q
A9 £ 2
. |24 | N
D:I:1992 - 0 1 0
Q A
9 9 _A
Tl ]
and
R cosp —sing 0
Dye, = | sing cosp 0 Ve eR.
0 0 1
Especially for
XW(O) = —e3,
therefore, aA
1 — cos (| t))
[eNG <
in (|Qalt
Xw(t) ‘QA| SlIl(| A| )
A4 Q2 cos (| 1)
NG
Remarks:

1. We see that the population of |g) and |e) oscillates with angular
frequency |Qa| = \/(wo —w)?+ Q2.

2. For |A| > 2 these RABI oscillations are negligible.

Draft, November 5, 2011

BThus:

pw(t) stationary <= x,(t) x Qa.
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3. If Qa is ‘slowly’ changed with time and the initial angle between
pu(t) and Qa(t) is ‘small’ then this angle remains essentially con-
stant.

4. This adiabatic following of x,(t) may be used for specific state
preparation:

For instance, starting with x,,(t) = —e3 and A > Q decrease
w until —A > . Then x, changes essentially into +es, i.e. the
atom’s state is changed from |g) essentially to |e) .

The exact value of wy does not matter in this connection!

5. Of course:

X(t) = Dy tes Xu(t) .

6. Spontaneously emitted radiation — recognizable as fluorescence but
not considered so far — could be taken into account to some extent,
as far as p,(t) is concerned by inserting phenomenological damping
terms into the evolution equation.'*

7. The RABI oscillation are correlated with a modulation of the am-
plitude of the emitted light. Therefore side-bands show up at the

angular frequencies'® w + \/ (wo — w)* + Q2.

8.3 3-Level Atoms

8.3.1 Population Trapping
Now assume that the atom is coupled to the classical field
Ecx(0,1) ~ (8p e twnt 1 £, e‘“’ct) + c.c.

and that maximally only the three levels |g),|g),|e) are (essentially) occupied.
Then, if

(glxle) - EX = (| x]e) - &5 =0,
(e[xe) = (g|x]g) = (g|x[g") = (g| x]g) =0, (8.18)
in dipole and rotation wave approximation the LIOUVILLE equation restricted to
Hiow(®) < L({l8) 1), 1))
is

Lod . R
ih - o (t) = [T (1), Pt (1)) - (8.19)

Draft, November 5, 2011
HSee (Scully and Zubairy, 1999, 5.3) and 8.3.2.
15See (Mandel and Wolf, 1995, Eq. (15.3-22)) for the special case x(0) = —e3 .
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atom 5

gY@ ¢ g% —< Qpe“(“’pHd’p)\g><e|+h.c.>

— (h Q) etilwettoc) g’} (e| + h.c.) 7

2
def 2(] N x _—q
Q, = - (g|xle) - Exe ™ >0, (8.20)
of 2 X W
2 € S (glxle) - EreT >0,

With the definitions

~ def 1~ ~ 2
prot(t) - Urot (t) pg?}m“) UrOt(_t> ’

Ten(t) U i CnttonlaNel oot Ne|

Hooi(t) = Unon(t) HE) Unon(—1) + hese |2 (] + By [g) (8] — E
this gives
Ld o - .
Zh E prot(t) — [Hrot(t)v prot(t)]— . (821)

Using the CAMPBELL-HAUSDORFF formula'”

~

eABe*A:eadAB, ad 4 (B) aef [A,B], VA B,

and
ledel ) el] =l . [le)e] Ig)el] = lg)el

we get

. o h

Halt) = ~n2 1) (el — h AN (e — 5 (le) (el + le) e o)

h / / '
= 5 () el +le) ),
where E_E £ _E
def e def e /
A, = z E—w,, A= hg—wc
For the special case
Ay=A,=A

Draft, November 5, 2011

16 Note that

(3
AS) . = Ecle){e| + By g)(g] + Ey |&')(g]] -

17See Footnote 35 of Chapter 1.
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this gives

) ) R
Hy € Ho(t)+A = -5 % 28 Q
0 Q 0

w.r.t. the basis (|g> Jle), |g’>> and hence

This implies that the dark state

PO (1) = |¥dark (D)) (Caani (1))

(not depending on A), where

d}dark <t>

L Qe gy et )

163

is a solution of the LIOUVILLE equation (8.19) — which is also easy to check directly.
Thanks to (8.18) the expectation value of the atom’s electric dipole moment vanishes
in this state. Hence the atom has no optical influence.

Remarks:

1. By suitable adiabatic variation of €2,,€). the population may be
transferred completely from |g) to |g/) ."®

2. Extremely weak pump radiation (with angular frequency w,) has
to be treated quantum mechanically since in this case the spon-
taneously emitted portion of the total radiation with angular fre-
quency wj, can no longer be neglected."?

8.3.2 Electromagnetically Induced Transparency

Of course, (8.21) can be solved explicitly for H,o(t) given by (8.22). For simplicity,
however, let us assume strict resonance

Draft, November 5, 2011

Ay =0 =0.

(8.23)

18See (IKuklinski et al., 1989). For the possible implementation of a universal set of quantum

gates based on adiabatic population transfer see (Moller et al., 2007).
9See (Fleischhauer and Lukin, 2000) for this case. In (IKuang et al., 2003) both the pump and
the coupling radiation are treated quantum mechanically.
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Then we have

Fa(®)8) = ~59le)
Fro(t)lg) = —5 900}
Ha(®)le) = —5(0le) +0cle))
and hence
Hot) (2 le) = 2 l8)) = 0, (8:24)
. Q, Qe h A LB, 02
) (0 2l 1)) = —3(le+0el)) 75 (24 ) W
- (0@ g).  6)

where

0 e /0202,

(8.24) corresponds to population trapping for the special case (8.23). (8.24) and
(8.25) show that the normalized vectors

v 2 S(0le) -9, )

vy € % (Ie> + (% lg) + % Ig’>)>

are eigenvectors of Hmt(t) :

. h (8.26)

Note that
v v = o (Qle) + % l8)) (8.27)

and, therefore,
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The latter implies®

e—% Hrot(t)t |g>
_ S Ly yio -4 Qt
s30T 50 (i, — ity )

Q. Q. (0 2,0\ ° Q Q, Qe QN
— ﬁwojtzﬁsm(gt) |e>+(ﬁ) sm( )|g> o2 cos(gt) lg"

i.e. the probability for finding the atom in the excited state at time T is

2 Q Q Q
(e|e” i Hror (¢ t|g>‘ = ﬁpsin (§t>

2 2
S(ﬁ) <1 for Q, < Q
if the state at time ¢ = 0 is given by |g) .

This explains the effect of electromagnetically induced transparency (EIT):

The coupling radiation = €. applied to the atom initially in the ground
state |g) essentially prohibits transitions into the excited state |e), if
Q, < Q, thus making the atom transparent for probe radiation = €, .

8.3.3 Change of Linear Susceptibility?!

In order to calculate the susceptibility for the pump frequency, fading out of the
transient perturbation — see Exercise 38a) of (Liicke, ¢in) in this context — has
to be incorporated. A convenient heuristic way to achieve this is modifying the
evolution equation into??

d . R .
i o (8) = [ (1), P (D) — i 5T, plitmn (1))

by means of a phenomenological relaxation matrix

[ = + v lede| + v | (g] .

Ve |8) (el + e le)(el + e [g)(g]]
=0 >0 >0

For the interaction picture®

~ def (3) 3 _ i m®3)
Py eI 0 (1) e e,

~ e (3) ~ ~ i 77(3)
Vi) & et Haomt (Hc(f)(t) _ Héi”im) ek Hatom t

Draft, November 5, 2011

201f o damping term is added to Hyot (t) then |g) will be driven into the corresponding dark state;
see (Scully, 1994).

21'We essentially follow the representation in (Scully and Zubairy, 1999, Sect. 7.3).

22 Actually, one should also add zh\[pawm )\/f on the r.h.s. in order to get a LINDBLAD

equation preserving the trace and positivity of p;t())m(t); more generally, see (Ottaviani et al., 2006).
However, this would not effect the result for the linear susceptibility.

23See 6.1.2.
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this implies

ih— (1) = [V'(0), p'O)- — i 5[0, A" () (8.28)
with
5 O e~ Art=%0) |0) (e |—|—h.c.)

h )
— (5 Q e~ A=) 1) (e 4 h.c.> :

In order to determine — for given coupling radiation — the linear atomic suscepti-
bility

«(1) ( )8 o li TQ i<A>(t) +iwptdt
Xatom\Wp) €p = Tirfm P o0, 4 e
~ def

n = g pf;_[@) X /\ Hatom

atom

for the pump beam we develop the functlons

def , ., . . ’
pi(t) = (| p'@) k) Vi.k e {geg}

into power series of €2, :

Then we have

«(1)
€0 Xatom(wp) gP .
) i g® q® i
R A QT( et 3 (B k] R u) it dt
Jke{geg'} |
:<&ﬁl(t))\np:0
_ E Ek +iw t
= lim / S (Kl g% 1) Qp etiert i
Jk€{g.e.'}

(8:18) TLIIJrrl (p[eg< )6 L(Be—Eg)t <g| q)A( |e> Qp + C.C.> etiwnt qt
. o Jg

: 1] Ee—E_ )t / 1 & +iwpt
+TETW i (peg (t)e” i (Ee—Ey) <g|qx|e>Qp+c.c.>e dt.

(8.29)
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With
1 h —i(Apt—dp)
Vi@, l8)el] = 5 2e @) fg)el — hec.,
. i A
VI, 8] = 5 Qe g (e] - hue.,
(1 h i(Apt—o
Vi)l = = (5@ g el — he.
- (g 0, ¢ HBet00) |7 (o] h) ,
[y Ry —iApt—gp)
VI, Jedel] = 5 e @ (fe)el — lg)ie)
. ggc e—i(ACt—¢>C) g/> <g’ :
roa. h _Z B
V@), lengl] = o Qe (leyel — [g)g))
] h
— 5 Qe O g (g
! / h +i(Apt—¢ h i(Act—oc)
V@) le)el] = =5 Qe @) fe)(g/| + 5 Qe e A1) [g)e]
and A
L] = g+ w) 1K Viik € {08}
together with (8.28) we also conclude that
pre(t) = 0,
pe(t) = —ep(t), o
0 8.30
Pre(t) = i pg(t).
Ve T Ve
Prelt) = —E5 = pgult)
and .
] i _
peg(t) = 5 e (pLl(e) — pll(n))
i 1(Act—dc Ve
5 Qe il (1) — 2l )
D = 5 Qe Sl
(8.31)
Z U Rcl—Pc f)//
5 €A pge(0) = (1),
: i iAot
P = Sacetae (@) — o)

+i eTibpt=dp) [0

Ye TV 1
5 (1) = === e (8).

2 eg’
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For the special case

pl(to) = [g) (gl VYV (8.32)

(8.30) implies
Al =1, k(e = g (®) = pga(t) =0
and hence, by (8.31),

.1 i i — i 1(Act—de 1 7

ped(t) = 5 et AO) 4 S0 ATy () — Tl
i cl—dbe Te'

poL(t) = 5 Qe A ll() - Qgp[g]g(t)

If, moreover, we assume

(853

R() = —MR()+A,

then me may conclude

where:

i 5 Qe etide % +iA,

)

The solution of the initial value problem (8.34) is

A_:

~ def < ’Ye + ZA % QC €_i Pe )

R(t) = M7'A — M) 1A

— M'A. (8.35)

to——o0

Sketch of proof for (8.35): Since
N . 1 2
det (M N E) = 1 (e = E)(3 — B) + (2/2)°

M — i/, has only eigenvalues E with R(E) = 1 (v +7¢) > 0. ]
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Therefore,?! assuming (8.32) and (8.33), asymptotically (for large ¢) we have

3 _ Vo! .
e+ (Apt ¢P) (% _|_ ZAp)

W = L
peg( ) - 2 Yo . Vol . 9"
(3 +i0,) (% +i8,) + (2/2)

For E.—E E.— B,

eh g>0<Tg3«réwp>0
this, together with

2q .
Q, = =L (e|x|g)-E, et
p 8.20) h (e[x]g) - &p

and (8.29), implies®

H(l) W Wp —W, S
€0 Xatom(Wp) Ep = pha(t) r =)t (g] g% |e) Q

i (glgxle) <<e] gx|g) - 8p> (% +¢Ap>
(s (Frin) £ @27

Thus, especially for
€y o (e[ x]g)
we have o)
Xatom (Wp) Ep = Xatom(wp) Ep
where

oyt i telaxiol (% +i,)
Xatom(Wp) = € h (% + iAp> <’% + iAp> + (Qc/2)2

Together with
1
(% +i0) (% +8,) + (/2
B () (02 i+ ) A
B % — (A + (/2 + ( +y)A
T - (A + (2/2)" —
(3% — (A +(2/2)) + (% + %) (Ap)°

Draft, November 5, 2011

24Note that

-1
a b ([ +d —c
ad—bc#0 = (c d> (b +a)/(adbc) Ya,b,c,d e C.

25We do not show explicitly that the second contribution on the r.h.s. of (8.29) vanishes.
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this, finally, gives:

R{uony)) = VElZERE % (C5)"+ (" - (227)
R h (X - (A +(2/2) + (3 + %) ()
(gl g [e)]’ ()" T+ % (55 +(2/2)%)
) Xatom(wp) = Vot 2 2\ 2 Yol \ 2 2
( ) Oh (2 (824 (/2% + (2 + ) (A))
Defining
O MY D
21+ () xe
i) A
=17+ (Be) 22
= L 5 fir A#0
(A =1/ + (%)
we get

_ 2l(glakfe)’ (24
%(Xatom(wp)> - €0 h £< Qcp) 7

() = 2T 3285

Vg =0<Q =

€0 h Qc QC

Jfax 7(A) = A(1).

For the special case €. = 2+, the graphs of the functions £(\) and () are sketched
in Figure 8.1.

Quite generally the complex refractive index of an isotropic medium with linear
susceptibility x(wp) is characterized by

Nwp) € /14 x(wp) €R, +iR.

Because of

(J{/wjti WWS@;H(%@))) =z VzeC\R.

the latter is equivalent to

1+ x(wp)| + R(1+ x(ap) )
! ,

(W) — 11+ X(wp)| — Z?R(l+x(wp)> n(3(en)

@R(wa)) -

_— +

+
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Figure 8.1: Graphs of the functions £(\) (red,below) and n(\) (green,above).
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Chapter 9
Cavity QED

The general idea for modeling the coupled system of an atom and radiation in a
high @ cavity is the following:

e There are only a few resonant modes dominating the radiation in the cavity.
Therefore, in a reasonable approximate description, all other modes of the
quantized radiation field may be disregarded.

e There are only a few levels of the atom involved in the interaction with the
cavity field. Therefore, in a reasonable approximate description, the internal
state space of the atom subsystem may be restricted to describe just these
levels.

9.1 The JAYNES-CUMMINGS Model

In the simplest model of cavity QED the radiation field is restricted to a single,
essentially monochromatic mode a and the atom is described as a two-level quantum
system at some fixed position in the cavity.

9.1.1 Quantized Radiation Field for Selected Modes

Let aj,a,, ... be a maximal family of pairwise orthogonal modes. Then, by (1.37),
flk) = la;(k),af] - Vje{l,2} ,veR, keR’, (9.1)

(1.61) together with (1.33) implies

173
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where

£, 2 —i(2m)F Viwhe Y [ el €09 fa,(1), ) e

(1.61) together with (1.53) implies

CHAPTER 9. CAVITY QED

n
= Y hydla, VYneN,

vp=1

where

(9.4) simplifies to

he k| (£ (k)" £ (k) dVi

if the modes a, are non-overlapping, i.e. if

vEn = ) =0 Vje{l2).

Vi
N (9.3)
(9.4)
(9.5)

Remark: Note that restriction to the non-overlapping modes aq, ..., a,
can only be consistent if, e.g., the di Q,...,al Q have (sufficiently) sharp
energy. Actually for cavity modes this is only possible due to a change

of boundary conditions resulting in a change of the dynamics.

Thus

restricting the Hamiltonian of the radiation field to some non-overlapping
modes is much more drastic than restricting the Hamiltonian of an atom

to a few levels.

9.1.2 Interaction of the Two-Level System with the Cavity

Field

Let the atom be localized at x = 0. Then the electric field representation discussed

in 7.1.2 suggests using'

7 def

H:av =

= Hm+H&_qu'E&7
Draft, November 5, 2011
'Recall the agreement made in 7.1.1.

(pﬂm X P?—La) (ﬁatom + Hgeq — gx- E()(()a 0)) (PHm b2y pm)

(9.6)
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where

et . b et A
E, & E<+>(0)+(E<+)(o)> L ke M Py %Py (9.7)

a a

as an approximate Hamiltonian for interacting system of the two-level atom and the
quantized single-mode radiation field.

Remark: Note that in the electric field representation pea, is to be
interpreted as the (approximate) observable of the mechanical — rather
than canonical — momentum of the atom’s electron! Correspondingly,
Hatom 18 to be interpreted as the (approximate) observable of the internal
energy of the one-electron atom.

Assuming?
(U, |x¥,) =0 forv=1,2 (9.8)
and defining
por < g (Ug | X W,) (9.9)
we get
G % = po1 b+ py b (9.10)

for the (restricted) atomic dipole operator in the matrix representation. This is a
simple consequence of (9.7), (9.2), and (8.11). Moreover, defining

i (2r) 2 c 2 c k| e, aj al (Vi
e ~ien) Vit 3 [ ele9 a,00.al)-

we get .
E:s=E&a+ & (9.11)

for the restricted electric field operator as a direct consequence of (9.7), (9.2), and
(9.3).

Let us consider the special case®
e + iez e + ie2
=y ———, E=E —r"o—1 9.12
Ho1r = {4 \/5 0 \/§ ( )

Then, up to an irrelevant additive constant, ﬁcav coincides with the JAYNES-CUMMINGS

Hamziltonian

Hic ™ haoblb + hwafa + xalb + A abl, (9.13)

Draft, November 5, 2011

2This assumption is usually fulfilled for the stationary states ¥y, ¥; of the atom.

3The first condition corresponds to U; — ¥y being a Am = +1-transition. If the conditions
(9.12) are not fulfilled (9.13) is called rotating-wave approxrimation; see, e.g., (Schleich, 2001,
Section 14.8.2).
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where

2
w3 [ek@.aj00)- (409,01 Ve, A% 6.
1

3=

Proof: Thanks to

(el+i82)2:07 (e1+ie2)(e1—ie2):2

we have
S -EA B ( e1+ie26+ « el—ieggT)
qXm a (9.10)7(9.12) Hm \/§ Hm \/i
e +iey . e —iey .
| & a+& aT>
( TVva "2
= Xafb+ A\ abt. (9.14)
(9.2), (9.3), and (9.1) imply R
H, =hwala. (9.15)
(8.4) and (8.9), finally, imply
H, —hwob'boc 1, (9.16)

Now, the statement is a direct consequence of (9.14)-(9.16). g

Without loss of generality, we assume that*

With
HO {a ]0,0) : a € C}

and

r}_[(nJrl) déf{(()él) défOé() |0’n—|—1>—|—041|1,n>: Qg, O E(C} Vn€Z+,

&%)

where
def 1

1j,n) = \Ifj®ﬁ(eﬁ)”9 Vje{0,1} ,nez,.
n.

we have

Hon @ Ha = é H™
n=0

and, obviously, Hjc leaves all the H(™ invariant. For every n € Z. , since

a'ljn) =vVn+1ljin+1), aljn+1)=vn+1ljn),
Draft, November 5, 2011
4Otherwise we could change @ by a phase factor to arrange this.
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we have
I:]JC (al) = HJ(g+1) (041) Vag,ap €C
n Oé[) n
with
) det hwo+nhw Avn+1
e AWn+1l  (n+1)hw
. )
= B4 Wn+ 17 b7
and

= def def

E, = h<w0+(n+1/2)w> , 0 =wy—w (detuning).

In order to exploit (9.17), note that®

P T 3T iPT = sta% Vo eR?.

Sketch of proof: A straightforward calculation using (8.8) shows that
def iveT ~ —igpeT
flp) =fi(p) = e ¥oT 777

is a solution of the initial value problem

%f@) —exi(p), B0)=+.

Since also R R et
f(@) = fQ(QO) = D2ape T

is such a solution, both f1 () and f5(¢) must coincide. 1

Thus ) )
s n ~ 71 Fr(n A N
ett 7 Hye tT€ iy Hyg 't DQQnte’n 7,
where
vVn+1\/h
def
e, = 0 Q,
5/2
and

Q, \/<%> (n+1)+ (g) (RABI frequency) .

177

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

Note that, according to (8.13), the nutation of the BLOCH vector (relative to e3) cor-
responds to transitions between the two levels of the atom with a circular frequency

Q.

Draft, November 5, 2011

5By 1590 we denote rotation around the axis along ¢ by the angle || .
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Assume that
g

(%]

Gt (

is a normalized eigenstate of HJnH)

o (ag + af)

\041|2 - \040|2

holds for either ¢ = +1 or ¢ = —1.

normalization:

(a1)” + (ap)* =1

Thus,

+1_{_05 1 od
o] = — Q) =014] = —
'm Va2 T4q, ° 2 40

CHAPTER 9. CAVITY QED

) e HH) | ap >0,
n

n € Z, , Then, by (9.20),

This implies 0 ay > 0 and, together with

oo
Q,

) (041)2 - (040)2

2

holds for either 0 = +1 or 0 = —1. We conclude that

1 o9

+

— L)+

{ \il(nJrl) déf +

. . . 2 1
is a maximal orthonormal set of eigenvectors of Hfg+ :

H](g_‘_l) \I/(Tl-'rl)

oo
40,

1

Jr

0,74 1) : ae{—,—i-}}
)

(B, £ hQ,) WY, (9.22)

Proof of (9.22): The statement is a direct consequence of

~(n+1 = A (&3]
(H](C )_E"TO) (ao)n
and
2Q, Fod )

/\\/n—|—loz0+hgoz1
AMWn+1ag

il
(A\/iJrh(s)
(oS i)

(9?7)

n

(977)

)

oxlvn+1(2Q, F0) e
2

4(0,)% — 62

a/\\/n—&— (29, ZFU(S)
\/n—i—

0
h2

(931)

ohQ, .
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Since

!PT = cos || 70 + i sin || P 3 Ve eR?

[l
(see Exercise E25b) of (Liicke, eine)), (9.17) also implies

)\\/n—l—lAl_i_ 0 .5
ne, 20, ) )

i H(nJrl)t

e~ w e = e_%E"t (cos (Qn ) 70 — i sin (Q ) (
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Appendix A

A.1 Functional TAYLOR Expansion

Of course, the polarization of a nonlinear medium should be a nonlinear func-
tional of electromagnetic field. The first order functional derivative characterizes
this functional only approximately (fortunately with very high precision for usual
fields). This is why a functional TAYLOR expansion is needed.

Let 7 be some complex vector space of functions on R" with norm' ||.|| and let
F be a continuous (complex) functional on 7, i.e. a continuous mapping from 7T
into C. Then the functional derivative® of F at g € T , if it exists, is the unique
bounded linear Functional L, on 7 fulfilling

1

I Z|F — F(g) — Ly(p)| =

Jim, sup = |F(g + ) = Flg) o(p) =0
llell<e

F(g):

and is identified with the generalized function

6g(x)

[ (o 70 e = 1) e

Note that

/R( 5 F(Q))@(X)dezhm Flagtep) = Flo) o

§g(x) e—+0 €

if L, exists. More generally, the n-fold functional derivative

5 )
dg(x1) ~ dg(xy)

F(g)

Draft, November 5, 2011
IThe linear space 7 need not be complete w.r.t. ||.|| .
2This is a special case of the FRECHET derivative (see, e.g., (Choquet-Bruhat et al., 1978,

p. 71)).

181



182 APPENDIX A. APPENDIX

of F' at g is iteratively defined by

0 6
F O (X)) AV, o AV
/an (5g(xl) 09(Xp41) (9>) pr(x1) .- Pra(Xis1) N

o )
d:f/]R (?(X)F@2 ..... Sé,hq(g)) ©1(x) dVy Yor,...,0001 €T,

where

def 0 )
/Vn (59(X2) 59(%y11) (9)) ©a(X2) .. Puy1(Xpgr) AV, oo AV, oy

VQDQ,...,QDVJrl S T

This amounts to

) )
F 1) ..o (x) dV, . .. dV,
o (i Ty 1) 00 -t N
9 9 (A1)
= —... Flg+eor+...6,0,) Vor,...,0 €T
861 ae” |El:.4.:EV:O
henever 0 0 F(g) exists. (A.1) especially implies
whenewv xists. (A.
Sglxr) " bglx,) ’
a v
— | F
() riovea)
—/( 0 0 F()) (1) o(x) AV, . Ve, Vo eT
. 6g(X1) (5g(xy) g PX1) ... Xy X1t Xy ¥ :

Therefore, for sufficiently well-behaved F', we have the functional TAYLOR ex-
pansion

x) <3
Flg) = (/=™ mtr(g))

\920

e = 1
def F(0)+ZJ/FV(X1,...,XV) o(x1) ... o(x,) AV, ... dV4, ,
v=1

where 5 5
Bty ) S (59(X1) " og(xy) F<g)>|g—o et
More precisely, we have
F(p) = F(0)+ z”: % /Fl,(xl, X)) e(x1) (%) AV, L dVy,
v=1
+% 01 (1= A" (;A)nﬂ Flog)da,

This formalism has a straightforward generalization to vector-valued functions g on
R™.
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A.2 Elementary Quantum Mechanics’

A.2.1 Scalar Particles in R!

(In the SCHRODINGER picture) the (pure) state of a single, free, 1-dimensional,
scalar, quantum mechanical ‘particle’ of mass m is always given by a wave function
U(x,t) fulfilling the free SCHRODINGER equation

Hkin =
—~ =
i L w = L e (A.2)
at ) 2m p Y )
where
det L O
h = ——. A3
P = o (A.3)
Its basic interpretation is
/ | (z, t)|* dz = probability for ‘position at time ¢ inside G’ (A4)
g
for all (sufficiently well-behaved) region G C R and requires*
/|\I/(x,t)]2dx ~ 1 (A.5)

for all t € R. Simple asymptotic considerations® show that the spatial FOURIER
transform

- 1

def
\I/(p, t) = \/ﬁj

(adapted to quantum mechanics) has a similar interpretation w.r.t. linear momen-
tum:©

/\I/(x,t) erPrdy (A.6)

~ 2 .
ﬁ‘@(p, t)‘ dp = probability for ‘momentum at time ¢ inside G'. (A.7)
g

The latter is consistent in the sense that

/\Ef(p, ol ap = / W (2, )| de (A8)
1.
Draft, November 5, 2011

3For mathematical details see, e.g., (Liicke, fuan).

*As usual, we write [ for [*_resp. [ . One can easily show that (A.2) guarantees that (A.5)
holds for all ¢ if fulfilled for t = 0.

5See, e.g., (Liicke, 1995, Section 5).

6 Actually, (A.2) implies the L.h.s. of (A.7) — contrary to the Lh.s. of (A.4) — to be independent
of t.

2
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APPENDIX A. APPENDIX
Defining

Uy (z) € W(at),
@ o) ¥ [Teow .

and the position observable i by

(A.9)
one gets
(U, | 2,) = /:L‘|\I/t(m)|2dx
and hence’
N - def | expectation value for the position variable
(We | 20) = (x(t)) = { x at time ¢ in the state given by W, . (A-10)
Similarly one has
(W, | pU,) = (p(t)) def | expectation value for the momentum variable (A.11)
LIP T = AP p at time ¢ in the state given by U, , '
since B B
(x,t) = pW(x,t) = ®(p,t) =p¥(z,1)
and, therefore, the generalization
[E@ v ar = [ 30)¥0) (A12)
of (A.8) implies
~ 2
(U, |p0,) = /p‘\l'(p,t) dp. (A.13)

In view of (A.11), p is called momentum observable. (A.10) and (A.11) are
consistent in the sense that

(A2) — %@:(t)) - % (p(t)) = constant. (A.14)
Similarly to (A.14) one gets
N P? |~ 2
(U, | Hin W) :/% U(p,t)| dp

Draft, November 5, 2011

"Note, however, that (x(t)) may be infinite.
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and, therefore,

(w

If the particle is not free but interacting with an external force field with poten-
tial® V(z) then, of course, (A.2) has to be modified. The basic interpretations (A.4)
and (A.7), however, are maintained. Therefore, also (A.10) resp. (A.11) has to be
maintained for (A.9) resp. (A.3). But now, in addition, we have

(A.15)

i > def { expectation value for the kinetic energy

om e ) = (Blan(t)) = at time t in the state given by W, .

. def | expectation value for the potential energy
(Lo | VI(2) Te) = (Eian(t)) = { at time t in the state given by W, .

(A.16)
Assuming that the expectation value of the total energy is the sum of the expectation
values for kinetic and potential energy, one concludes from (A.15) and (A.16) that

A B def | expectation value for the total energy
<\I/t | H\pt> = (EW) = { at time t in the state given by W, , (A.17)
where the operator
o def D7
H= T +V(z) (Hamiltonian) (A.18)
m

is the observable for the total energy. The latter suggests replacing (A.2) by the
time dependent SCHRODINGER equation

z%m@w:ﬁ@@o, (A.19)

coinciding with (A.2) for V' = 0. This is consistent in the sense that — generalizing
(A.14) — (A.19) implies the EHRENFEST equations

G O =200 300 = [ (-5 V@) ol i

and (E(t)) =constant.

A.2.2 Energy Eigenstates of the Harmonic Oscillator

One of the main objectives of quantum mechanics is to determine the (possibly
improper) energy eigenfunctions, i.e. those W(z) for which there is an energy value
E with

Ho(z)=EV(z). (A.20)
Draft, November 5, 2011
8For particles interacting with a general electromagnetic field see 7.1.1.
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These eigenfunctions give rise to the special solutions
Uz, t) =e n P10(z) (A.21)

of (A.19) called stationary, since

(A21) = %|\I/(x,t)|2 ~0.

Let us solve (A.20) for the (quantum mechanical) harmonic oscillator,

characterized by
V(z) = % w?a?. (A.22)

This problem is easily solvable by means of the operators

5 det p—imwi ot et pHimwe (A.23)
V2mhw vV2mhw .
fulfilling the commutation relations’
[a,a'] =1 (A.24)
and hence the equations
(afa)a = a (ala—1),
(d*d) al = a'(a'a+1).
Iterating these equations gives'®
(a'a)ar = a"(d'la—v) VveN, (A.25
(a'a)(a")” = (a)" (a'a+v) VveN. (A.26)
Since
i =" (a'a+aal)
2
1
= hw (eﬂa +35) (A.27)
we have
H@v) = (FE—-v)a"V
AUV =FE0 — { . (A.25)
H((a")" ) o (E+v)(ah)yw
(A.

Draft, November 5, 2011

9 . . 2 . . . . . ~ ~1__ h
We simply write z for 21 (with z € C) in the following. Note that, in this sense, [p, 2] = 7.

10Note that, e.g., (A.26) also follows from
a (af)”(@) (@ a+v@) .
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for all (sufficiently well-behaved) W. Thus, if ¥ is an eigenfunction of H with
eigenvalue E then

<a"x1/ | Ha\Il> — (E—v) (" V| & W)

could become negative if a” ¥ were nontrivial for all v € N. The latter, however is
impossible because of

. S
<<1> | Hq>> e how (@@ a®) + 5 hw (@] @)
> 0 VO #£0.

Therefore:

For every eigenfunction ¥ of H there is some W € Z4 with

a(av) =0. (A.28)

Now, a* W is fixed — up to some factor — by (A.28):

d mw
a(a*v) =0 — — (") () = ——— 2z (a" V) (z
@0=0 = @@ =@ @)
d
= aln(d“\lf)(x):—%x
— (@) (z) ~ e~ 20"
We conclude that
HU=FEU — 0+£a" U ~Q for some pu € Z, , (A.29)
where!! .
O(x) (%) e BT 40 =0. (A.30)
Iterating
@h’ar = (af)""" (ata)ar
— aN tarata — (v —
= a a a'a v—1
(A.25) ( ) ( ( )>
we get

(@)@ = (ala)

and conclude:'?

(A.31)

Q>
-
Q>
[u—
~—
S
Q>
Rty
Q>
|
—
<
|
[S—y
SN—
N———
<
S
m
Z

1
H (aHh" 0 — (+—>hw§2 Y€ Z,,
(@) (A.26),(A.30) B35 fr= o

Draft, November 5, 2011
HNote that /e*g”2 dz = /7 (more generally, see (2.83)), hence (2| Q) =1.

12Note that
VA0 = (@) a"w#£o0,
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HU=FEU \Ifw(dT)”Q for some p € Z ,

—
(A.29),(A.31),(A.27)

A.2.3 Coherent States

Recall’® that the operators
hd - d
L def g T LMW ot i@ Trtmwr
7 —

Qosc = osc - I
vV2mhw vV2mhw

of the 1-dimensional harmonic oscillator with Hamiltonian

s B (dN 1
HOSC:—%(E) —|—§mw2x2

h

also obey the commutation relation

A

[dosca CLZSC} = 1

and that

~

h
_ A4 st
Hosc - 5 w (a’osc Qosc + Qosc aosc) )
hence

- 1
H.. =hw (agsc Gose + 5) :

Here the ground state

1
def /MW\2 _ mw. 2
Qe () 2 <_> e
Th

corresponds to the vacuum:
Qosc Qosc =0.

Therefore, since

2h d 2
a&lsc—a&osc:%(a)y/mﬁ—i—i?ﬁ(aﬂ/%x,

the corresponding coherent states, according to (1.79) and (1.74), are

1 2
Vi i) = (T2)F esmente) st/ = 55 (4200 )
T

This shows that the coherent states of the harmonic oscillator are just displace-
ments in position and momentum of the ground state, hence have the same minimal

Draft, November 5, 2011

13Gee A.2.2.
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uncertainty product!'*

h R
Az Ap = 5= §A(a+aT)A(ia—z’aT).

In this sense, the coherent states of the quantized electromagnetic field correspond
to coherent classical fields as closely as possible.

A.3 Construction of Field Operators

Denote by § the complex vector space of all truncated sequences

f: {fO?flafZa"‘}

of (sufficiently well-behaved) functions'® f,(ki, ji;...;k,,j,) over (R x {1,2,3})"
fulfilling!'”

fu(kwlijl; s ;kTI'l/)jﬂ'l/) - fu(klajl; s ;kwjl/) Vﬂ- € Sl/
and

3
S [tk g AV Vi, < oo

jlv"'vjuzl

Of course, the linear structure is meant to be the natural one:

Zf - {Zf07zflazf27"'} VZGC,fGS,

F+1 Y {for i+ f ot} Vi EF.

With the inner product

3
ef - - . .
FINERfo+ Y. /fy(kl,h;---;kwju) foke, gk, g)dVig - d VA,

J1seensJv=1

Draft, November 5, 2011
14Quite generally we have

il J-w]” > ((3-2)o] (-9 |
= 1 <x1:‘[A7B]fo>H +1 <x1/‘[21—a,3—b]+xp>
T imaginary

for all selfadjoint operators A, B , all real numbers a, b, and every vector ¥ € Dy N D ;5.
5States with A(a + a') < 1 or A(ia — ia') < 1 are called squeezed states (see
(Scully and Zubairy, 1999, Sections 2.5-2.8) for a discussion of these states).
16The physical dimension of the values of these functions should be such that the integrals

Ifo (K1, d1s -5 Ky jl,)|2 dVk, ...dVx, are just real numbers without any physical dimension.

17 As usual, we denote by S, the group of all permutations of (1,...,v).
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F becomes a euklidean vector space (pre-HILBERT space). Now let us introduce
operator-valued functions b;(k) by'®

i =0k)f
g f;;(klajh . ;kl/7jl/) = 67% \/;fu+l(klajl; s ;kuajl/;kaj) VV € Z+7

where ¢ is some fixed length necessary for adjusting the physical dimensions. Then

A T
for the adjoint operators (bj (k)> , characterized by

“ N T
(i) = () i|r) vires,
we have ft = (@-(k))Jr fiff fi7 =0 and:
62 fy—l—l(kl ]17---’ku+1>ju+1)
Z g 0 (K — k) fori(ke, i Ru e - s kogr, Jon) Y € Zy.

\/F

Consequently, we have the commutation relations
7 7 / 7 7 / f -3 /
b3(1), by ()] =0, [by(K), (by(K)) | = €650k ~ K)

and the definition

where

yields a realization of the canonical commutation relations (1.37) fulfilling (1.38) for
Q% (1,0,0,...) .

Note that )
> ei(k) :B(k)—m-f)(k) Vk #£0.
7j=1
This shows that A
€;(k) in (1.31).

+)(x,t) does not depend on the choice of polarization vectors

Draft, November 5, 2011

80Of course “...:k,,j,’ should be dropped for v < 1 and also ‘k;,j;’ if v =0.
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A.4 DYSON Series

In the SCHRODINGER picture the state vectors (wave functions) W, = W7 de-
scribe the momentary situation of the quantum system at time ¢. Thus, if A = A5

is the observable of a physical quantity A then <\IftS | AS \Ilts> is the correspond-

ing expectation value for A at time t. The time evolution is described by the
SCHRODINGER equation

0 N
maqff = H5(t) U} (A.32)
Now assume that the Hamiltonian in the SCHRODINGER picture is of the form
H3(t) = Hy + V(1) (A.33)

Where HS(t) corresponds to some known ‘free evolution’” and VS(t) is some pertur-
bation of the ‘free’ Hamiltonian Hj(t). Then we may get a perturbative solution
of (A.32) by switching to the interaction picture:'

TS s O g (A.34)
AS(t) — Alt) L et i AS () e it (A.35)

This way (A.32) becomes equivalent to

ih%@i = Vi) wl, (A.36)

Sure, (A.36) has the same formal structure as (A.32). Now, however, for the suffi-
ciently small 7' the mapping?’

7: @(t)r—>—% tf/l(t)(I)(t’) dt’ (A.37)

may be contracting with respect to the norm

T
def
]l / |0 ()] dt:
i.e. the may be some A\ < 1 with
[l < A|®@fl, V.

If this is the case we have
o0
I 1
W= Z(I”qfo)(t) vt e [0,T] (A.38)
v=0
Draft, November 5, 2011
9See (Liicke, ¢ft, Sect. 3.1.3) for a qualitative discussion.
20Here we assume that ®(t) is a (sufficiently well behaved) function of ¢ with values in the state
space H and denote by ||.|| the norm corresponding to the inner product of H .
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(compare Section 5.1.3 of (Liicke, ein)), since (A.36) is equivalent to the integral
equation

-t
P % / AR
0
Using time ordering*
def

T (Vitr) - Vi(tn)) V(1) V(1) VH <. <ty €S,

we may rewrite (A.38) as DYSON series:**

gl o= fr(e—%fé‘?‘(t’)dt’) !

def > 1 7 v ~ ~
= %(0)+Z;(—ﬁ) /MVT(VI(tl)--~VI(t,,)>\I/(det1~~~dt,,.
v=1 )

(A.39)
Usually only the first order approximation
ot
xpgzxyg—;—i/ Vi) wydt Vit e0,T) (A.40)
0
is used — as justified for sufficiently small 7°. This implies for the transition
probability
t 2
(@§ 1 wh| ~ 2| [ (ob Ve ut)ar] e qab w0, (aap
0

Remark: Since

t
‘/ (@) | V() wh)ar
0

the corresponding formula for mixed states with density matrix pl is

trace(ﬁi }¢8><¢8D ~ h_Q/

[0.t]x[0,1]

2
_ / (08 | V112 Wh) (Wh | V4 (22) B ) dty i,
[0,t] x[0,¢]

<<1>8 | V() 5L VL (t) <I>8>dt1 dts,

in agreement with (6.19).

Draft, November 5, 2011
21 As usual, we denote by S, the set of all permutations of 1,...,v.
220f course, we tacitly assume also ¢ — VI(#) to be sufficiently well behaved.
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