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Preface

Quantum information processing is one of the most fascinating and active fields
of contemporary physics. Its central topic is the coherent control of quantum states
in order to perform tasks — like quantum teleportation, absolutely secure data trans-
mission and efficient factorization of large integers — that do not seem possible by
means of classical systems alone. The vast possibilities of physical implementations
are currently being extensively studied and evaluated. Various proof-of-principle
experiments have already been performed. However, in the present note only some
possiblities can be indicated. Main emphasis will be on quantum optical methods,
indispensable for transmission of quantum information.

For more complete information on achivements and latest proposals concerning
quantum information processing the Los Alamos preprint server

http://xxx.lanl.gov/archive/quant-ph

is highly recommended.

Recommended Literature: (Alber et al., 2001; Bowmeester et al., 2000; Ekert et al., 2000;
Nielsen and Chuang, 2001; Preskill, 01; Shannon, 1949; Bertlmann and Zeilinger, 2002;
Audretsch, 2002; Bruf}, 2003)


http://xxx.lanl.gov/archive/quant-ph
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Idealized Quantum Gates and
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Chapter 1

Basics of Quantum Computation

1.1 Classical Logic Circuits

The smallest entity of classical information theory (Shannon, 1949) is the bit
(binary digit), i.e. the decision on a classical binary alternative. Usually bits are
identified with the numbers 0 (for wrong) or 1 (for true) and typically correspond to
the position of some simple switch. Every definite statement may be encoded into a
sufficiently long but finite sequence (by,...,b,) of bits.! In this sense the essence of
a calculations may be described as the transformations of a finite sequence of input
bits (encoding the task) into a finite sequence of output bits (encoding the result).
This suggests the following model for actual calculators:

1. An input register (array of switches) will be put into a state corresponding to
the ni-tuple (by,...,b,,) € {0,1}"" encoding the task.

2. A computational circuit, the elementary components of which are called gates,”

transforms (by, . .., by,, ) into an ny-tuple (b1, ..., b)) of bits encoding the result
to be stored into an output register.

From the mathematical point of view it is only important which element of F,,, ,,,.
denoting the set of all mappings from {0,1}" into {0,1}", is implemented by
the circuit. Therefore, computational circuits implementing the same mapping are
called equivalent.

Every element of F,,, ,,, can be implemented by some assembly of gates listed in
Table 1.1:
DRAFT, June 26, 2009

L An important consequence of this fact is the halting problem (see Appendix A.1).
2For simple hardware implementations see (Piitz, 1971, pp. 244-252).

11



12 CHAPTER 1. BASICS OF QUANTUM COMPUTATION

Name Symbol | Class Action
ID — | Fia b — b
FANOUT | —4 | Fis b — (bb)
NOT | —{>—| 7, b — 1—b
AND FQJ (bl, 62) = b1b2
OR = f271 (b17 bg) = b1 + b2 — b1b2

Table 1.1: Elementary gates

Lemma 1.1.1 For arbitrary positive integer ny,ny all elements of F,, », can be
represented as compositions of tensor products of functions from Tabular 1.1.

Proof: See below. I

Thus every classical logic circuit corresponds to a graph consisting of symbols from
Tabular 1.1. For instance, the graph

Vi

corresponds to the mapping

SWITCH & OR o (AND ® AND) o (IDNOT ® ®ID ® ID) o (ID ® FANOUT ® ID) ,

acting as
bo if s = 0,
(bo 5,61 {bl ifs=1.

Another example is the graph

+ e
SR BT

corresponding to

XOR % ORo (AND ® AND) o (ID ® FANOUT @ ID)

o <ID ® (NOT o AND) ® ID> o (FANOUT & FANOUT)



1.1. CLASSICAL LOGIC CIRCUITS

Name Symbol | Class Action
e
CNOT 4@57 .,/r272 (bl, bg) = (bl, bl ) bg)
TCNOT - Foo (bi,by) = (b1 D by, by)
e

SWAP fzg (bl, bz) = (an bl)

.
CSWAP3 ]8[ Fis

(07 b17 bQ) = (07 bl7 b2)
(17b17b2) = (17b27b1>

CCNOT!

N
T 1

Fs3 (b1,ba,b3)  +— (b1, b2, b1be & bs)

Table 1.2: Some reversible gates

and acting as

(biby) — b @by {NOT(b2) it by =1

by itby =0
= b1+ by — 20109
= b1 + bg mod 2.

13

Of course, also for the gates listed in Table 1.2 there are equivalent networks, e.g.:°

CNOT = (ID ® XOR)o (FANOUT ®ID) ,

DRAFT, June 26, 2009
3The CSWAP gate is also called FREDKIN gate.
4The CCNOT gate is also called TOFFOLI gate.

5See (Tucci, 2004) for more equivalences of classical and/or quantum networks.

(1.1)
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>QD< , (1.2)

(1.3)

N
1V

Il
el
N
ol
NP

ey Iralls
Il

Now we are prepared for the

Proof of Lemma 1.1.1: Thanks to FANOUT and SWAP it is sufficient to proof
the lemma for decision functions, i.e. for no = 1. Obviously, then, the statement
of the lemma holds for n; = 1, since the four elements of 7 ; are ID,

TRUE % OR o (ID ® NOT) o FANOUT,

and their compositions with NOT (applied last). Now, assume that the statement of
the lemma has already been proved for n; = n and consider an arbitrary f € F,11,1-
Then both fy and f; , where

Fo(bry e ibn) X F(by, .. b, s),

can be represented as compositions of tensor products of functions from Tabular 1.1.
There is a composition of FANOUTs and SWAPs acting as

(bla'“;bnas)}_)(blv‘“abnasabla"'vbn)'

Composing this with
SWITCH o (fo © ID ® f,)

(to be applied last) gives f. This proves the statement of the lemma for ny =n+1.

According to Lemma 1.1.1 we may perform arbitrarily complex computations by
composing simple hardware components of very small variety. Of course, given
f € Fuyns , there are infinitely many representations of f as composition of tensor
products of elementary components. Therefore, the interesting problem arises how
to simplify a given gate (logic circuit) without changing its action.’

From the technological point of view it is also of interest that

NAND % NOT o AND

DRAFT, June 26, 2009
6See (Lindner et al., 1999, Sect. 8.2.3) for ny < 6 ,ny = 1 and (Lee et al., 1999;
Shende et al., 2003) for quantum gates.




1.1. CLASSICAL LOGIC CIRCUITS 15

is universal in the sense that it can replace NOT, AND, and OR as elementary
gates:”

NOT = NAND oFANOUT,
AND NOT o NAND,
OR = NANDo (NOT ® NOT) .

In the same sense

NOR & NOT o OR

is universal:

NOT = NORoFANOUT,
AND = NORo (NOT @ NOT) ,
OR = NOToNOR.

Alternatively, in order to minimize dissipation of energy (Landauer, 1961; Landauer, 1998;
Plenio and Vitelli, 2001; Bub, 2001; Parker and Walker, 2003), one may execute all
calculations using only reversible networks® (Toffoli, 1980a):

Since?
CONOTs (b1, ba, 1) = NAND(by, by)  ¥by, b € {0,1}

and
CCNOT, (b, 1,0)
CCNOT3(b, 1,0)

the CCNOT gate is universal for reversible classical computation in the following
sense:

)::FANOUT@) Vbe {0,1},

For every mapping ¢ € F,, », there is a reversible n-bit network com-
posed of only CCNOT gates,'Y SWAP gates, and ID gates (wires) im-
plementing a mapping f € F,, (n > ny,ny) fulfilling

fl(bla"‘7bn17cn1+17"'7cn)
. :¢(b1,...7bn1) Vbl,...,bnl E{O,l}

fn2(b1, e 7bn17 Cpi41y--- ,Cn)
for suitably chosen constant bits ¢, 41,...,¢p .

Of course, it is a nontrivial task to optimize such networks.!!

DRAFT, June 26, 2009

"Ie., every classical logic circuit corresponds to a composition of tensor products of IDs,
FANOUTSs, and NANDs.

8 Reversible classical networks (logic circuits) are those corresponding to bijections f € F,, ,
for some n € N.

9TorroLl called his gate the AND/NAND gate to indicate that also CCNOT3(j,k,0) =
AND(y, k) holds. Correspondingly, he called CNOT the XOR/FANOUT gate.

10The CNOT gate cannot fulfill this purpose for classical computation.

HSee (Shende et al., 2003) and (Tsai and Kuo, 2001; Younes and Miller, 2004;
Shende et al., 2006), in this connection.
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Theorem 1.1.2 (TOFFOLI) For all ny,ny € N and for every ¢ € F,, n, there is

some n € <max {ni,na},....,n1 + n2> and some bijection f € F, , with

Filbrs. .. by, 0, ..., 0)
: = B(br,. .., bpy) Vbi,... by, €{0,1} .
Fas(®r, o b, 0, 0)

Proof: See (Toffoli. 1950b, Theorem 4.1).

Exercise 1 Show that CSWAP acts as indicated and, therefore, is universal for
classical reversible computation:

by b b b
by 1 130 0 b
0 b1bs 0 1

Exercise 2 Show that the following networks act as indicated:!?

0 ay
ay j /i ;— a3z
as .. as

an—-1 ——————— - X 2%
an 0

b) Adder’® for a,b € {0,1} :

a) Multiplication by 2:

0o —b <5, Cout = A Cin Db (a® cin)
a a
+ =
b b
Cin & B adboan

DRAFT, June 26, 2009
128ee also (Vedral et al., 1996; Draper, 2000; Tsai and Kuo, 2001; Cheng and Tseng, 2002).
13Note that aci, Db(a®cin) =0iff a+ b+ < 1.
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c¢) Adder for a,b € {0,1}" :

0 e | co

ap D ——— al
+

by e — by

0 H C1  — a ® by ® ey

0 ——— | Cn—2 «J_I» Ap_2 P by _o®Cp_o

Ap_1 . an—1
+
bn71 . br_1
0 — Cn—1 -y Ap—1 @bnfl @Cn,1
a, - an,
+
by on
. Gn Dby & cp

z": a, 2"V + z": b, 2"V =y 2" + z”: (a, ®b, ®ec,)2"" .
v=1 v=1 v=1

J/

g

T+y

g g
z Y

Exercise 3 Show that for every reversible classical 2-bit network there is an equiv-
alent one composed only of CNOTs, TCNOTs and NOTs.!4

1.2 Quantum Computational Networks

1.2.1 Quantum Gates

If the computational registers are made smaller and smaller you will finally have
to take into account the quantum behavior of the devices. Then a n-bit register has
to be considered as an array of quantum mechanical systems to be ‘switched” —
for classical computation — into one of two selected (pure) states corresponding

DRAFT, June 26, 2009

Hint: Check the action of (ID ® NOT) o TCNOT on the ordered set of 2-bits.
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to two orthonormal state vectors, usually denoted |0) and |1). This way the n-bit
information (by,...,b,) will be encoded into the state vector

b1, ..., b,) = |b1) @ - |by) (1.5)
corresponding to the situation:
‘Switch’ number v being in the state corresponding to |b,) for v =1,....n.

Then reversible classical n-bit gates correspond to permutations of the 2" states
corresponding to the orthonormal computational basis

{Ib) : b e{0,1}"}

of the registers state space. Since such permutations are special unitary transfor-
mations there is a chance to implement them by mathematically simple quantum
mechanical evolution (governed by some SCHRODINGER equation). Of course the
interpolating states do no longer correspond to some element of the computational
basis even if this is the case for both the input state and the output state. Moreover,
quantum mechanics allows coherent superpositions as input states,'® correspond-
ing to complex linear combinations of the elements of the computational basis. Then
the gate causes the transition

S by — ST Alfb))

be{0,1}" ¢ be{0,1}"

where f € F,, is the mapping corresponding to the classical action of the gate.
This means that, in a way, the gate is able to perform all the 2" transitions

b) — [f(b)) , be{0,1}",

simultaneously — thanks to quantum mechanical evolution. Of course, one would
like to exploit this massive quantum parallelism for more efficient computation.
Unfortunately quantum mechanics imposes severe restrictions:

1. Unknown coherent superpositions cannot be copied with arbitrary precision
(Wootters and Zurek, 1982; Peres, 2002). Otherwise a device for superluminal
communication could be constructed (Werner, 2001, Chapter 3).

2. Every measurement of an unknown state destroys most of the information
carried by that state (quantum state collapse).

3. It is extremely difficult to correct errors caused by unwanted interaction with
the environment.

Nevertheless quantum computational networks can be devised, at least in principle,
which are much more efficient, for certain tasks, than classical computational net-
works. Their general structure is as follows:

DRAFT, June 26, 2009
158ee (Long and Sun, 2001) for an efficient preparation of these superpositions.
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e The information is usually processed on one and the same quantum register'
realized as an array of qubits,'” i.e. quantum mechanical systems with a
preselected simple quantum alternative corresponding to orthonormal state
vectors, usually denoted |0) and |1) .

e The possible (pure) states of such an n-qubit register correspond to the (nor-
malized) complex linear combinations of the elements (1.5) of the computa-
tional basis.

e ‘Simple’ quantum computational steps are depicted in the network model by
quantum gates with an equal number (< n) of quantum wires (horizontal
lines) attached on both sides. These quantum wires represent the qubits on
which the gate acts.

e Several quantum gates may be assembled as in the classical reversible case
(without loopbacks, of course).

e The whole network itself is a (more compljcated) n-qubit quantum gate acting
corresponding to some unitary operator U .

e The action of this operator on the initial state vector |by, ..., b,) representing
the task (encoded in the bit sequence (by, .. .,b,)) has to be checked — i.e. the
output state U |b1, - - ., b,) has to be measured — to yield a result.

Even though only the probability of a certain outcome of a quantum computation
is predictable (according to the rules of quantum mechanics) quantum computation
may be very useful for problems of the type

“solution easy to check but difficult to find”.

This will be demonstrated by several quantum algorithms in Chapter 2.

Remarks:

1. We use the naive tensor product formalism of quantum mechanics to describe
coupled systems. The latter is very problematic if the interaction of matter
with radiation is to be described; see Section 6.2 of (Liicke, nlqo).

2. Of course, the network model described above is just the simplest model for
quantum computing. Some possible generalizations, not to be discussed in this
chapter, are:

e Computation with non-unitarily evolving mixed states (Tarasov, 2002).
e Quantum computation via application of sequences of one-qubit projective
measurements to suitably prepared initial states (Raussendorf et al., 2002).

e Use of non-deterministic gates, i.e. those succeeding only with proba-
bility (considerably) less than 1 (Ralph et al.. 2002; Bartlett et al., 2002).

DRAFT, June 26, 2009
16Thanks to the SWAP gate this is not a necessity but this point of view simplifies the treatment.
17Usually qubits are treated as distinguishable, due to their localization in (essentially) disjoint

regions; see (Fickert et al., 2002) for a refined description.
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Name | Symbol | Operator Matrix Action
7 sate 0 <u11 u12> |0) = w11 [0) + uz |1)
a2 1) = 12 ]0) + uz2 |1)

Table 1.3: General one-qubit gate (u_lj Upg + Ugj Ugp, = 5jk>

Name Symbol | Operator Matrix Action
ID gate — 1 ((1) (1)> B) — |b)
NOT gate 4>O 2 0 1 0) = |1)
¢ 1 0 ﬁ
& 0) — [0
phase shift gate Ss ((1) 95) |0) — | >
i 1) = e ]1)
1
- G (11 10) = 75 (10) + 1))
HADAMARD gate Uss - <1 . b
"

5 (10) = 1)

Table 1.4: Special one-qubit gates

3. We are not going to discuss oddities like'® “quantum computation even before
its quantum input is defined” (Brukner et al., 2003) or “counterfactual compu-

tation” (Mitchison and Jozsa, 2001). For quantum programming we refer to
(Bettelli et al., 2001).

The elements |by,...,b,) of the computational basis of an n-qubit system are
naturally ordered by the corresponding integers

I(b) ¥ iby 2" ybe{0,1}". (1.6)

v=1

It is relative to this ordering that the actions of quantum gates are usually repre-
sented by unitary matrices as in Tables 1.3—1.5.

Remark: Note that every (complex) unitary 2 x 2 matrix corresponds to a spin
rotation; see, e.g., Exercise 19 of (Liicke, tdst) and Sect. 4.2.1 of (Liicke, gft).

Note that a quantum gate may be used for classical computation iff the entries of
its matrix take only values from {0,1}. Whenever this is the case we use the same

DRAFT, June 26, 2009
18See 3.1.4, however.
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1.2. QUANTUM COMPUTATIONAL NETWORKS 21

Name Symbol | Matrix Action
. ]1 O ‘bl,...,bn,c>
U) ate : 2" 3 ) . '
/\n( ) (OU - |b1,...0n)@Ulc)y ifby=...=b,=1
b1, ..., by, C) else

Table 1.5: Special (n + 1)-qubit gates

symbol and name for the quantum gate as for its classical analog. In this sense we

have, e.g.,
%) = CNOT : - T
M) B
No(5) = CCNOT : e = e . (1.7)
o e
ie.

e . (1.8)

Obviously, the phase shift gate (for 6 # 0 mod 7) and the HADAMARD gate have no
classical analog.

Sometimes it is more convenient to sketch the action of a gate as done in Figure
1.1 for the f-CNOT gate.

|b1)
1ba)
lc® f(b))

Figure 1.1: f-CNOT gate for f € F,,




22 CHAPTER 1. BASICS OF QUANTUM COMPUTATION

Quantum computational networks are called equivalent if they implement the
same mapping up to a phase factor.

Exercise 4

a) For arbitrary a € {0,1}" , n € N, show that

a
N

where
fab) € 6, Vb e {0,1}"
and Ndﬁf{% ifb=0,
b = A~
1 else.

h=f®dg —

A first example showing the superiority of quantum networks is the DEUTSCH-
JOzsA problem:

Assume you are given an (n + 1) qubit gate which is only known to be
the f-CNOT gate of some f € F,; that is either constant or balanced,

i.e. fulfills
Z (_1)f(b) —0.
be{0,1}"
Find out by ‘asking’ this DEUTSCH-J0ZSA oracle whether f is balanced
or constant.

Note that in classical computation

|b1) |b1)

1b2)
(b))

ba)
0)
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you may have to ask the DEUTSCH-JOZSA oracle 2"~!+1 times (in the worst case)
to find the answer. Already for n = 60 that would take more than

259
60-60-24-365-1

to get the answer if the oracle is asked at a frequency of 1 GHz. In quantum com-
putation, however, we may take advantage of coherent superpositions:

0 years > 18years

1 Wb |1
= —1 b vbe {01
5 2 ) {0.1)
€{0,1}
and hence
Gy =22 3 (-1)"Pb) Wb e {0.1)" (1.9
b’e{0,1}"
we have
07" Vo f-ONOTol " 0., 0,1) =27 3 (-=)/®*™™ 1) . (110)
b,b’€{0,1}"

For the DEUTSCH-J0ZSA oracle this means

~10,...,0,1) if f is constant,

Uﬁ@(n—i—l) o f-CNOT o Uﬁ@(n-&-l) |0, ..., 0, 1> = { n |() ...,0 1> else.

Therefore, the following quantum gate has to be used only'” once in order to solve

the DEUTSCH-J0ZSA problem (Cleve et al., 1998, Sect. 3):

ST 0,...,0) if f is constant,
1 L10,...,0) else.

DRAFT, June 26, 2009

19 Actually, since there is always some tiny probability for getting the wrong answer, the
quantum test should be repeated a few times. For a physical realization of the algorithm see
(Gulde et al., 2003).
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Remark: (1.10) holds for every f € F5; and can therefore be applied
also to the BERNSTEIN-VAZIRANI oracle, i.e. the f-CNOT gate with
f(b) =a-b for some a € {0,1}". Then ¥ becomes

27 3T ()P ) = [a)

b,b’e{0,1}"

1.2.2 Quantum Teleportation

Obviously, the BELL network

AR
— &

acts according to®"

def det 10,0) +1,1)

‘O’O> — \11070 = ®+ = T - < 0,0 & i) \IJU,Oa
. o 10,1) + 11,0 -
0,1) — Vo, o v, d—f% = ( 0,1®1> V0.0
e e O:O - 171 2 1
1,0) — W, & @_‘i:f% — (Gio®1) Do,
o o , 1) — |1, A A
1,1) — Uy = W QW ( 1,1®1) Vo,
where X et
Uoo % +10)(0] + [1)(1] = 1,
A de A
Uoa o + DO +]0)(1] = =,
A~ de A~
Uro » +10)0] = [1)(A| = S,
A~ de ~ ~
Uip = —|1><0|+|0>< | T

This indicates the possibility of quantum dense coding:*'

DRAFT, June 26, 2009
20The states on the r.h.s are usually called BELL states. They exhibit maximal correlation

between the two qubits. We use the notation @ def _E . Thus
B), +a

V2

1 \ U v v ) 2
A - ® W e\ {0} .
(‘I’l (ol el —

21Gee (Mermin, 2002) for an interesting discussion of dense coding.
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Bob prepares the entangled® state W o by applying the BELL network
to the easily available state |0,0) and sends his first qubit to Alice (ar-
bitrarily far away). Now Alice may transfer a 2-bit message to Bob by
applying one of the operators 0070, [A](M , 01,0, UM to this single qubit
and sending it back to Bob. Bob can ‘read’ this message by performing
a BELL measurement, i.e. checking whether the state of the 2-qubit
system is \11070, 111071 s \I/L(), or \11171 .

The whole procedure is described by the following network action:

|b1) [b1)
|b2) |b2)
o) {H S |————{H} )
10) D D |b2) .
Remarks:
1. As pointed out in (Mermin, 2002), the network
L e
A S—rf——uf D
D D ——

— although unsuitable for dense coding — has the same effect on the considered
special input.

2. We use abbreviations like

——
L X?(
A [A]

without explicit definition.

Moreover, checking the special cases U € {|0),|1)}, we see that the teleportation
network

DRAFT, June 26, 2009
22 Entanglement of vector states ¥ means

ig.

(U|A® B|¥) £ (U|Ae1|0)(¥|ie B|¥) ,

i.e. (non-classical) correlations between the subsystems. See (Brukner et al., 2001) in this context.
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iy

4
WV

]

N
N

acts on ¢ ® |0,0) in the following way:

vel0)—z S ey,

be{0,1}?

(for every one-qubit state vector ). This indicates the possibility of quantum
teleportation:*

Qubits 2 and 3 are prepared in the state @y (indicated by the BELL
subnetwork on the left acting on |0,0)). Then qubit 2 is sent to Alice
and qubit 3 to Bob (far apart). Since, now, Alice and Bob share an
entangled pair of qubits, Alice may teleport the unknown state v of
qubit 1 to Bob in the following way:

Alice performs a BELL measurement on the system formed by
qubits 1 and 2 and sends Bob the classical 2-bit information
b if the result is Wy, (corresponding to the output |b) of the
teleportation network for qubits 1 and 2). After receiving this
information Bob transforms the (collapsed) state of qubit 3
into ¥ by applying Up.

Note that the actions taken by Alice and Bob, sharing the entangled pair, have the
same effect on qubits 1-3 as the following post selection scheme:*!

—1»— —+
> : +
™

o

In this sense the following scheme describes teleportation of entanglement, also called

DRAFT, June 26, 2009
23The possibility of teleportation, further discussed in Appendix A.2, was first pointed out

in (Bennet et al., 1993). Generalization to n-qubit states is straightforward (Diaz-Caro, 2005).

Concerning the experimental realization of quantum teleportation see (Giacomini et al., 2002).

24The symbol ~* represents an ideal test (projective measurement) whether the corresponding

qubit is in state |0) or |1). It is instructive to study the BELL measurement as a two-step process,
in this connection (Groisman, 2008).
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entanglement swapping:>

0 HH]
it

&
—e

|
NGEE

=

A
%
1>
El

This possibility is very important for creating entanglement for teleportation over
very large distances.

Exercise 5 Show that the entanglement swapping scheme prepares the subsystem
formed by qubits 1 and 4 (arbitrarily far apart) in the state Wg .

1.2.3 Universality

A 2-qubit gate corresponding to the unitary operator U® is called universal if
for every quantum network there is an equivalent one composed only of one-qubit
gates and 2-qubit gates corresponding to U@ .

Ordering the computational basis vectors

I(b)), < |b) Vbe{0,1}" (1.11)

as 0),,,]1),,... 2" — 1), then \,_1() just interchanges the last two of these vec-
tors, the latter being |1,...,1,0) and |1,...,1,1). Also cyclic permutations of the
computational basis vectors can be achieved by suitable composition of A, (=) gates,
as the following exercise shows.

Exercise 6 Show that the n-qubit network

N
%

N

D
>

D
%

iy

DRAFT, June 26, 2009

258ee (Bowmeester et al., 2000, Sect. 3.10) and (Gisin and Gisin, 2002).
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acts according to
|z), — [(z + 1) mod 2") ~ Vax e€{0,...,2" — 1},

where

Zby2”1> by vbe{0,1}". (1.12)
v=1

n

Therefore:

For every quantum gate that has a classical analogue there is an equiv-
alent quantum network composed only of A, (=) (and ID) gates.

This together with the following theorem shows that the CNOT gate is universal if
the following holds for every v € N :

For every U € U(2) there is a network composed only of single qubit

A~

gates and CNOT gates (and ID gates) that is equivalent to the A,(U) (1.13)
gate.

Theorem 1.2.1 Let 2 < N € N. Then every unitary N X N-matriz may be
represented as a product of permutation matrices and N X N-matrices of the form

10 -
B UelU(2).
(o 2)- (2
Outline of proof:?® Given 2 < N € N, choose some orthonormal basis {ey,...,ey}

of CV. Then, for arbitrary
U= (“11 “12) cU(2),
U1 U22
N e{2,...,N},and v € {1,..., N} define

Uiz €N/—1 + Ugens for v = ]\f’7

def U1 €N/—1 + U2 N/ fOI'VZN/—l,
A €
UN/ e, =

e, else.

Then, for arbitrary normed
N
zZ = Z Ve, eCN,
v=1

N €{2,...,N}, and ¢ € C with

N

P+ > P =1

v=N'+1

DRAFT, June 26, 2009

26Compare (Reck et al., 1994; Dita, 2001).
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we have
0 0
0 0
~ (N’ 0 C/
U]&I’ : ¢ = SN
ZN’+1 ZN’+1
2N 2N

for suitable o) ¢ U(2) and ¢’ € C. Thus, by iteration, we see that there are
UM U® € U(2) with
2= 02 0Mey

(A]yw)*l... (U;%)’lz —en.

Identifying z with the last column of an arbitrarily given unitary N x N-matrix U

we get
((U]W)l . ((7;2))71 U) Gy

v,N

and hence

Thanks to unitarity, the latter also implies
A -1 N -1 2
(000) " () 0) = om
N,v

Iteration of this argument, if necessary, proves the theorem. 1

That (1.13) holds for v = 1 is a simple consequence of the following lemma
(Barenco et al., 1995):

Lemma 1.2.2 For every? U € SU(2) there are A, B,C € SU(2) with
U

ABC =1, AaB~C =0

Proof: Let U €SU(2). Then one may easily show (see Exercise 28 of (Liicke, eine))
that there are angles 1, 0, ¢ with

U = Rs(y) Ra(0) Rs(0),

where

- def [ eti¥ 0 - det [+cos? +sind
R 2 (507 O ) R (T )

With the definitions

A R Ra() o B Ra(-5) Ra(-150) . O m(P50)

DRAFT, June 26, 2009
*7As usual, we denote by U(2) the set of all (complex) unitary 2 x 2-matrices and by SU(2) the
set of all U €U(2) with detU =1.

>
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30
this gives
ABC = Rs() Ra(§) Ra(=9) Rs(—252) Rs(252)
—  Ra() Ra(—v)
= 1
and
A=BAC = Ry(y) Ry(§) = Ra(-9) R?}(*i
= R) Ra(8) (S Re(=9) ) (F s (-4
= Ra() Ro(§) Ra(8) Fis(452) Bo(45%)
= Rs(4) Ra(6) Rs(9)
- Uy
Remark: Note that ,0,¢ in the above proof correspond to the well-known
EULER angles; see Sect. 2.1.1.3 of (Liicke, mech) and — for generalization — also
(D’Alessandro, 2001).
Because of
|0)
b c——5
and
1)
b o8&

this has the following consequence:

Corollary 1.2.3 For A, B, C’, U according to Lemma 1.2.2 we have:

Jel—o—s——i}
Corollary 1.2.3 together with
0 A RN
. = A =e“A,

shows that that (1.13) holds for » = 1, indeed.


file:mech.pdf#mech-S2.1.1.c

1.2. QUANTUM COMPUTATIONAL NETWORKS 31

Exercise 7 Show that

—B— _
——
and?®
X _ —ibf
= 4L = A
O | AT H—D
Moreover, because of
|0) 10)
0) —o—b—9+—b 0)
b {F—Ta—a-
|0) 0)

= =
o
Jah)
N
&H
Jah)
Y
=
o> =
Q ~
=

= =
o]
Jany
N
EJ}.
fany
NV
-]
= S
m ~
=

s =
R
JaR)
N
=}
Jah)
N
=
~

(Al AC )

——
=
W

DRAFT, June 26, 2009

>

Z8Recall (1.3).
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This SLEATOR-WEINFURTER construction may be generalized for /\n(VQ) with
arbitrary n € N :%

L
R

Since

mm:{W;VGU@}
this that (1.13) holds for every v € N hence:

The CNOT gate is universal.*

DRAFT, June 26, 2009

290f course, one should look for more efficient implementations; see, e.g. Exercise 8 and
(Aho and Svore, 2003; Vatan and Williams, 2004; Shende et al., 2004). For a nice introduction
into the general theory of computational complexity see (Mertens, 2002).

30T herefore, if CNOT is implementable together with all one-qubit gates and projective mea-
surements w.r.t. the computational basis, all observables can actually be measured.
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Exercise 8 Show that the following network acts as indicated:

b1
|b2)
|b3)
b ° o
|ba) t '
|bn71>
|bn)
o) —P S,
|0) <, Sy,
|0) S, P
|0)
|0) D D
|0) D ,—Tj S,
‘bn+1> [gl
o= Ulbpy) ifby=...=b, =1,
|bps1) else.

Exercise 9 Show that?!

&l
T
1
El
H J
=]

and that

acts according to
G, k) = (1) [ k)

DRAFT, June 26, 2009

31This equivalence is exploited in most suggestions for physical realization of CNOT.

33

|br—1)
|br)
0)

0)

0)
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Chapter 2

QuantumAlgorithms!

So far, we have only discovered a few techniques which can produce speed up versus
classical algorithms. It is not clear yet whether the reason for this is that we do
not have enough intuition to discover more techniques, or that there are only a few
problems for which quantum computers can significantly speed up the solution.

(Shor, 2000)
2.1 Quantum Data Base Search

2.1.1 GROVER’s Algorithm

Let us assume that the b € {0,1}" are the indices of the entries of some un-
structured data base. Moreover let us assume we are given a search machine that
provides an implementation of the f,-CNOT gate, where

1 fb=a

Vb 0,1\"
0 else € {01},

falb) = {
when fed with a unique characterization of some entry indexed by a. Now consider

the following problem:

Find a with probability > 50% by testing the behavior of the f,-CNOT
gate.

DRAFT, June 26, 2009
! Algorithms are general, step-by-step procedures for solving general problems.

35
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Figure 2.1: Action of G on <I>(()") .

In classical computing (recall 1.2.2) one has to test fo-CNOT at least 2"~ !-times? in
order to find a with probability of 50% . A substantial speedup,® exploiting quantum
parallelism, was suggested in (Grover, 1996). The basic ingredients of GROVER’s
algorithm are the initial state

(I)(n ) def U®n |0 > — 2—n/2 Z ’b) = 2—n/2 (1)1,1 (21)
be{0,1}"

and the unitary operator
Gy = _RCPén) R|a> , (2.2)

where R
Re¥i_-2P, VUEH,.

(n)
0

Since both reflections R‘a> and R(b(n) leave the |a)-®;"-plane invariant, éa acts as
0

a rotation in this plane. To determine this rotation it suffices to check its effect on
o
As explained in Figure 2.1 this action is a rotation by the angle 20 towards |a) ,

(n)

where 7/2 — 6 is the angle between & and |a) . Therefore:

Applying G, an appropriate number of times to <I>((]") and testing the
result with respect to the computational basis solves the posed problem.

DRAFT, June 26, 2009
2Moreover, expectation value for the necessery number of tests for finding a is

AR

v=1

2”+1

Z\T

3See (Aaronson and Gottesman, 2004), however.
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2.1.2 Network for GROVER’s Algorithm

Exercise 10 Show that the following (n + 1)-qubit networks act as indicated:*

‘If{ C | fal }501)‘1’ + 51bé\a)qj

A~

Using the obvious notation and generalization of A (U) for n-qubit unitary operators
U, we get from Exercise 10

and therefore:

DRAFT, June 26, 2009
4Recall Exercise 4a).
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2.1.3 Details and Generalization

For actual application of GROVER’s one has to know the number of times G,
should be applied. This can be read off from®

G @ = sin((2u+1)6) Ja) + cos((241+ 1) 0) \/% Sy, (23

b#a
where .
0 def arcsin <—> . 2.4
= (24)
Since
0~2 "2 for27"? <« 1
we have

G o ~ |a)  for p= E\/W} and 2" > 1.

In this sense GROVER’s algorithm provides a quadratic speedup compared to clas-
sical computation.

Let us now consider the case that there are exactly t data base entries,® indexed
by aj,...,a; € {0,1}", meeting the search criteria and that the search engine,
therefore, provides an implementation of the (fa, + ... fa,)-CNOT gate. In order to
find at least one of these a, we just have to replace Ga by

A def £ ; 2
Gay,oar = — By Blay) -+ Blay)

which may be implemented as described in 2.1.2 with the f,-CNOT gate replaced
by the (fa, + ... fa,)-CNOT gate. Correspondingly, (2.3)/(2.4) have to be replaced
by

i o a) + ... |as) 1
G o = sm((?,u +1) et) |—+Cos<(2u +1) et) )
vt 2t =t bé{ai,...at}
(2.5)

6, < arcsin <\/t2_n) . (2.6)

Choosing p such that sin2((2u +1) 0t> is close to 1 we get a state that is essential

and

a superposition of only those states of the computational basis which correspond
to data base entries meeting the search criteria. Performing a test we select one
solution at random.

DRAFT, June 26, 2009
SFormula (2.3) was presented first in (Boyer et al., 1998).
6For  instance, we may be interested in only a subset of Dbit-values
(Grover and Radhakrishnan, 2004)
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Unfortunately, we only know how to choose p if we know ¢. If ¢ is unknown we

find a solution after an expected number of O (, / 2”—;1> applications of the described

procedure with suitably chosen p's (Bover et al.. 1998, Sect. 4).

For interesting modifications of GROVER’s algorithm see (Ambainis, 2005; Korepin and Grover, 2
Tulsi et al., 2005) and references given there. For a few-qubit experimental imple-
mentation of the algorithm see (Walther et al., 2005) and references given there.
For application to robots see (Dong et al., 2006).

Final Remark: Presumably GROVER’s algorithm will not be useful
for searching a standard database, because transferring the database to
quantum memory would require too much effort (Deutsch and FEkert, 1998).

2.2 Factoring Large Integers

2.2.1 Basics

The greatest common divisor ged(ng, ny) for given ng,ny € Z may be efficiently
determined via EUCLID ’s algorithm.:”

Defining
o {1 o] £0 )
0 else
successively for v =0,1,2,... we get
ged(ng,ny) =ng for s=sup{reN:n, #0} < co. (2.8)

Thus, factoring a given product N = p;ps of unknown large integers pq, po is a task
of the type

“A solution is easy to check but extremely difficult to find.”

Classical encryption schemes rely on this fact.

DRAFT, June 26, 2009
"As usual, we use the notation

|z| défsup{neZ: n<z} VzeR.

Thus, for n,411 # 0, n,42 is the remainder of the integer division of n, by n,41. For details
concerning EUCLID’s algorithm see Section 2.2.3.
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The most popular public-key encryption algorithm® is RSA, named after its three
inventors Ron Rivest, Adi Shamir, and Leonhard Adleman. It works as follows
(Rivest et al., 1978):

e Messages and keys are represented by natural numbers corresponding to binary
strings.

e Messages M are encoded as
C =M mod N,

where N > M and e are two public keys created in the following way:
1. Two large prime numbers p and g of comparable size are ran-
domly chosen? and kept secret. Only their product
N=p-q

is publicly announced.

2. e is chosen as a large random number having 1 as largest com-
mon divisor with (p — 1) - (¢ — 1) — to be checked by EUCLID’s
algorithm.

e The message may be decrypted in the form
M =C%mod N .

where d € {1,...,(p—1)-(¢—1) — 1} is the private key to be determined
from!?

e-d=1mod (p—1)-(¢—1).

Of course, d has to be kept secret as well as the prime numbers p, ¢ which then may
be forgotten.

The task of factorizing N in the form
N=p-q withp,ge{2,...,N—1}
is essentially solved if a factorization
ny-n_ =0(modN) (2.9)
of an integer multiple of N is found that fulfills the conditions

ny # 0 (modN) (2.10)

DRAFT, June 26, 2009

8See (Singh, 2002; Kahn, 1967) for the history of classical cryptography and (Schneier, 1996)
for applications.

9See (Rivest et al., 1978, Section VILB) how to find large prime numbers without testing pri-
mality by factorization.

10The essential point is that

P=1)-(¢=1)=¢p-q,
where ¢ denotes the EULER function introduced in Theorem 2.2.1, below. d may be determined
modulo (p — 1) - (¢ — 1) running EucLID’s algorithm (2.7) for ng = (p—1)-(¢—1) and ny = ¢
and resubstituting iteratively the expressions for ng = 1, s given by (2.8), using (2.7) to yield the
representation 1 = e -z + y - N with certain integers x,y .
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Then'!
ged (ne, N) e {2,...,N -1} (2.11)

and these factors may be efficiently determined using EUCLID’s algorithm.

Outline of proof for (2.11): Obviously, every prime factor of N must be a factor
of either n4 or n_ (or both) and neither n4 nor n_ can be the product of all these
(not necessarily pairwise different) factors. g

Finding a factorization of type (2.9),(2.10) is facilitated by the following theorem.

Theorem 2.2.1 (EULER’s Theorem) Let xz, N € N. If x and N are coprime,
i.e. if ged(z, N) =1, then
2#™) = 1mod N

holds, where EULER’s ¢ function is defined as'?

ef
p(N) Y {yeN: y< N, ged(y, N) =1}

Proof: See, e.g., (Schroeder, 1997, Sect. 8.3) or (Niclsen and Chuang, 2001, Theo-
rem A4.9).
By EULER’s theorem, for N € N and
re{2,...,N—-1}, ged(z,N)=1 (2.12)

the function
fo) ¥ 2 wez (2.13)

has a minimal period

r < inf {a e N: 2z =1(modN)}, (2.14)

called the order' of x modulo N. If r is even and
2" % —1(modN) (2.15)
then the conditions (2.9) and (2.10) are fulfilled for

ni:xr/Qj:l.

DRAFT, June 26, 2009

1 As usual, we denote by ged(ny, ns) the greatest common divisor of two integers ny, ns .

12By |M| we denote the number of elements of a finite set M .

13The numbers x € {1,..., N — 1} form a group w.r.t. multiplication modulo N . Every element
x of this group generates a cyclic subgroup of order r.



42 CHAPTER 2. QUANTUMALGORITHMS

Outline of proof: (2.9) is a consequence of (2.14) and
(337'/2 + 1) (:1:7'/2 - 1) =z"—1.
(2.10) follows from (2.15) and the corresponding property

2"/? % 41 (modN)

implied by (2.14).

Summarizing, we have the following factoring algorithm:
1. Randomly choose some x € {2,..., N — 1}.
2. If ged(z, N) # 1 then x is already a nontrivial factor of V.
3. If (2.12) holds, determine the order r of x modulo N .
4. If r is odd or 2"/? = —1 (mod N), restart the algorithm.

5. If r is even and 2"/ # —1(modN), determine the factors ged (z7/2 + 1, N)
using EULER’s algorithm.

Thanks to the following theorem (and EULER’s algorithm) the efficiency of this
factoring algorithm depends solely on the available techniques for determining (2.14).

Theorem 2.2.2 Let m be the number of different prime factors of the positive
integer N and let x € {1,...,N — 1} be randomly chosen. If ged(z, N) =1, then
the (conditional) probability for (2.14) being even and x"/?> # —1(modN) is not
smaller than 1 — 27 .

Proof: See, e.g., (Nielsen and Chuang, 2001, Theorem A.4.13). 1

In order to gain exponential speed up for the determination of (2.14), Peter
W. Shor suggested the following (Shor, 1994):

Instead of calculating z* (modN) for a = 1,2,... until the result is
1 (modN), transform the state

22L 1

1
oL Z |a)sr, ®10);

a=0

where
Ldéfmin{leN:NST} ,



2.2. FACTORING LARGE INTEGERS 43

into the state'*
221

1
oL Z |a)yy, ® |2 (modN)),
a=0

(exploiting quantum parallelism) and evaluate the latter by means of the
quantum FOURIER transform applied to the first 2L qubits..

2.2.2 The Quantum FOURIER Transform

In order to plot, over the interval [—Q, +€], the FOURIER transform

- 1 To .

flo) = o= [ swerar
2m Jo

of a (sufficiently well-behaved) signal restricted to the time interval [0, Tp] it is suf-

ficient to have the discrete values

~ 2 2
il kez. k2
f( ) ez, ‘T

<Q,
1o ol

if Ty is large enough (depending on the required precision). In order to determine
these values approximately it is sufficient to know the sampling values

Ty
| — ' 0,1,...,.N—1
i) semr v,

for sufficiently large N € N (depending on T and Q):
N-1
~( 2m 1 To\ pem i To
k— | ~ — — | "N — for
f( T0> VQngof(jN) N

Remark: In order to estimate the quality of this approximation note that

2T
EF—| < Q.
To| —

N—1 To\ iy 2 Ty _
Z f (j N) et NI = Ay n(t) f(t) et dt,
=0 0

where

and hence!®

~ N 2N
ATo/N(W):VQW?OZ(S(W_I“T — )
NyQuisT-frequency

DRAFT, June 26, 2009
4 An efficient implementation is described in (Vedral et al., 1996).
158ee, e.g., (Liicke, musi, Anhang A.1).
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Hence, using the so-called discrete FOURIER transform

N-1
~ def 1 ik 2T s
{zi}jeo. vy {x’f = \/NZW kN]} (2.16)
ke{0,...,N—

=0 Jkeqo,.., 1}
we get
~( 27 Ty - 2w
— | = Th( mo if [k—|<Q
f( To) vV2r N #( mod N) ‘ Ty
for the sampling values
Ty .
xj:f(']ﬁ)’ jE{O,,N—l}
Since
N—-1 on 1_€i27rm
e M= ——— =0 VYme{l,... N-1}, (2.17)
k=0 L—etwm
the inverse of the transformation (2.16) is
| Nl
~ def ~ gk 2ry
{$k}ke{0 ..... N-1} T {xj = ﬁ Tpe MW ]} : (2.18)
k=0 j€{0,...,N—1}

Especially for N = 2" we define the quantum FOURIER transform [, by

F, 3" ab)b) = N @(b)b) V(zo,...,7201) €CT, (2.19)
be{0,1}" be{0,1}"

where!®
def

x(b) = =z n
~( ) t j“’)} Vb e {0,1}".
z(b) = Zim

Obviously, F), is a linear operator on C?" and, therefore,
1

(z(a) =0ap Vace{0,1}") (2:1%) (%(a) = ol @5 I0b) g ¢ {0, 1}")

implies'”

V2rE, by = > e 1@ 37 1(B) |q) (2.20)

ac{0,1}"

= Y (T E M) vbe {01}
ac{0,1}" v=1
DRAFT, June 26, 2009

16Recall the definition of I(b) in (1.6).
"Note the ordering of

def
QP Xy = X1®...® Xn.
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The latter implies'®

. 1 X o
Fub) = —= &) (|0> et I®) |1>) Vb e {0,1}" . (2.21)
1

Thanks to

2 b 2

=1 foru<n—v

we may rewrite this as

®(|0 ¢ Dieeni T ) ybe (0,1} (222)

E, b)
| ﬁ

or as

E,|b) = \/2—n®(’0 (H ”ﬂw”b(wwa)u)) Vb e {0,1}"| (2.23)

a=1

showing, by the way, that F), is isometric.

Exercise 11 Using (2.23), show that the n-qubit network
5} - e t
417 @ P Y N ] L

GG
_k

with

1) |bn)

~ def 1 0
Sy = <O ei27r/2") ) (; )
|bn) |b1)

implements the quantum FOURIER transform.'’

show that

Moreover, using Corollary 1.2.3,

Q‘>

7 s

b _ {1
% - <

holds for 6, = —m/2" and C,, = Rs(4,) .

DRAFT, June 26, 2009
18 An import special case is F, [0) = US™[0) .
Note that

(\0> ¢ 1)) =Ualb) Vbe{0,1}.

Sl
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Remarks:

1. If the crossings are ignored then the above implementation of the quan-
tum FOURIER transform uses n/2 SWAP gates, n HADAMARD gates and n?/2
A1(8,) gates.

2. Since

e 5T, be{zo;l}nm”b) (a] 7ub)

= Z Z1(b) <Fn_1a‘b> Vae {0,1}",

be{0,1}"
the above network implementation for F, yields a nice factorization of the
matrix corresponding to the discrete FOURIER transformation. This factoriza-

tion is the core of the radix-2 version of the fast FOURIER transform (FFT)
algorithm.?"

Exercise 12 Prove the identities?!
V2F(0,by, ... b)) = +Fw_1(bay. .. by, 0, by, ... by)
b2 b 1 b, b)
V2F,(Lby, .. by) = +Fw_1(bay ... by, 0,bprin, ... by)
b2 (b b L b, )

for the partial discrete FOURIER transform J,, defined by

’

(Frw) () =N w(Bhe bty by) exp| +i27 Y by by 27

b'e{0,1}" v =1

/

for n’ <n € N and

2.2.3 Quantum Order Finding

DRAFT, June 26, 2009
20Gee, e.g., (Brigham, 1974; Nussbaumer, 1982).
2ILet us point out that

. n’ —v g 220 0nl)
el2T ) b, 27 i Vba, ... by € 40,1} .
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As already mentioned at the end of 2.2.1, to find the order (2.14) of a given integer
r€{2,...,N — 1}, SHOR suggested to exploit the effectively implementable®* state

221
e 1 - a
Ushor et 5% E (FQL\CL>2L> ® |z% (modN)),
a=0

22l 1

1 . on
- P |¢)y, @ |2 (mod N)), .

2.19,2.16) 22L

a,c=0

where
Ldéfmin{leN:NSQl} )

The essential point is the following:

2% (modN) = 2% (modN) <= o =amodr.
Therefore,

2

p(a,c) def ‘<|c>2L ® |z* (modN)), ’ \I/Shor>

2
. 12T
E 62(1 22L Cc

a'€Myg

1
2L

‘v’a,ce{O,...,22L—1},

where

M, {a’e{O,...,22L—1}: a’:amodr},

is negligible unless all the phases

brec
2T 22—L(m0d27r) S [O, 27'()
with

befo,... | (@ —1-min,) /r|}

are predominantly almost the same, i.e. (assuming L sufficiently large)
unless

re r
[0,27) 3 27 22—L(m0d27r) =0 (22—L) :

O L
o 22L
DRAFT, June 26, 2009

228ee also (Coppersmith, 1994), in this connection.

231f, by chance, r divides 22" then b runs from 0 to % —1 and, therefore, an adaption of (2.17)
shows that p(a, c) vanishes exactly unless 537 = d holds for some integer d.

The latter means that?

c d

22L

holds for some integer d .
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More precisely, one can show:**

A projective measurement of Wgy,,, w.r.t. the computational basis is likely
to find the first 2L-qubit register in a state |c),, with

c d
2L

1
<

5,2 ged(d,r) =1 (2.24)

being fulfilled for integer d .

If we have found a fraction ¢/2*" fulfilling (2.24) for some (unknown) integer d
with ged(c,d) = 1, then r may be efficiently determined using the continued fraction
algorithm:?

The motivation for the definition (2.7) — given ng,n; € N — is the observation

that .
n, n, ny
— L J + <nu — Ny L J) Vn,,ny, €N
ny+1 nV—‘,—l nu—‘,—l nu—‘,—l

/

vV
remainder

since, then, we have

n n 1
oo _ M|
ny RGW (ﬂ)
n2
Ll
n 1
B )

etc.,
hence the continued fraction expansion?®
v—2
1 1
@:{@JJF L b ven, s (2.25)
nq T Ny—1

with s given by (2.8).

DRAFT, June 26, 2009

2Gee (Shor, 1997, Section 5) for details and Appendix A.3 for an improved search algorithm.
Note that » < ¢(N) < N.

25Otherwise the prescription will yield an integer 7/ that fails the test 2" = 1(modN) almost
certainly. Then the whole procedure has to be repeated.

26Note that the continued fraction expansion does not change if ny and n; are replaced by
ngy =png and nj = pny, where p € N.
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Remark: Formally, i.e. without specification of the a, and b, , finite continued

fractions®”
ar| = as| a, |
bo+ —+—F—+.. .+,
N b,
are recursively defined by
ay | def a1
b =} i)
’ +| by T
and | |
a a ay e a a a,
pot @l e, ol o, a4 |
| bl | b2 | bu+1 | bl | b2 b + ayt1
b1
Due to

Nyy1 7 0 (2:7>) Nyt < Nyya < Nyl

s must be finite and fulfill the equation L"an = ”n—;l . Since

ng (nl/—17 nI/) 7é 0 — ng (nu-‘rh nl/)

we see that ged(ng,n1) divides ng and that ng, dividing ns_1, also divides ny and
ny . Hence (2.8) holds, indeed.

Given ¢, L € N fulfilling (2.24), the set of possible fractions % is strongly restricted
by the following lemma.

Lemma 2.2.3 Given ng,ny,d,r € N fulfilling

1
272’

Nno d

ny

using definition (2.7) and (2.8), we have™

for somet e{l,...;s—1}.

Proof: See (Nielsen and Chuang, 2001, Theorem A4.16). |

DRAFT, June 26, 2009
2TSee, e.g., (Perron, 1954; Perron, 1957) or (Brezinski, 1991) for the general theory of continued
fractions. See also (Baladi and Vallee, 2003).
28Note, however, that

=1 — Z| Zl ‘+17| Vag,...,a; € N.
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Therefore, using (2.7) for
ng=c, mn; =2

and determining — for ¢t = 1,2, ..., s — the numbers A;, B; € N characterized by

Un At -
\‘TLIJ + Z —_— ng(At7 Bt> = ]_7

LWJ E

’r:Bt forsometgs.‘

we have

Also these A;, B; can be efficiently determined via EUCLID’s algorithm:

! | |
aq a9 Ay,
bo+ o +
Clb [ b,
is well-defined then
«a | iyl |
by + AR pl | Gvbon Vv=1,....n—1
0 Z 0 Z| |b bys1 + ayiq
and, therefore,
ar|  asf a,|  Ay(ay,...,a,;bo,...,b,)
0+|b1 +|b2 - +|bll Bl/(a’lw"aal/;b(])"'?bl/) Y ’ "

if the A, and B, are recursively defined by?’

byAy—1+aVAV_2 forlj:172’,n
by By—l +a, BV_2

def
A, =

def
B, =

where
def def def def

A_l—l Ag—bo, B_1—0 Bo—l
Fortunately, these definitions also imply

a, =1 Vpe{l,....,n}

b, € N Vué{O,...,n}} — gcd(A,,B,)=1 Vve{l,...,n}.

Outline of proof:

Au+1 Bu bqul AV BV + Allfl BV

bl/+1 AV BV + Au—l BV—2 + bl/ Au—l BV—l

DRAFT, June 26, 2009

29Thus

(bu bl/+1 + al/-i—l) AV—l + (all by+1) AV—2 = bV+1AV + al/-'rlAl/—l
and similarly for the B, .
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and the corresponding equation with A, B interchanged imply
Ayy1B,—Byy1 Ay =—(A,B,_1—B,A,_1).
By induction, starting from
AoB_1 —ByA_1 =-1,
this gives
A, B, 1 —B, A, =(-1)""" vve{o,...,n}. (2.26)

In case
Au:dycl/» Bl/:el/CV

the positive integer ¢, would divide the Lh.s. of (2.26), hence also the r.h.s. The
latter, however, is only possible for ¢, = 1.

Example’ N = 899, L = 10 : If, for instance, the projective measurement gives
|267137),,, for the first 2L qubits, then we get™

Cc
922L

= [0,3,1,12,2,1,1,1,26,1,1,22, 2]
déf 0_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|_|_1_|
13 7|1 J12 j2 |1 "1 )L 26 |11 22 2

and succeed with ¢t = 7 :

107 d
0,3,1,12,2,1,1,1| = — = —
[ Y ) 7 Y 7 7 Y ] 420 r Y
i.e. testing r = 420, we get®® the factors
899
ged(11219 4+ 1,899) =29,  ged(1171 — 1,899) = 31 = 59
If, for instance, we unfortunately measure ¢ = 801411 then we get
801411
om0 = 0,1,3,4,7,1,80,1,1,7,6]

with the subconvergent

107 321
[0,3,4,7, 1] :EO (: @) .
In this case, although the condition
c d 1
T

(but not ged(d,r) = 1) is fulfilled (with d = 321) r = 420 will presumably not be
detected and the whole procedure will be repeated, maybe with a different random
value for x .

DRAFT, June 26, 2009

30Compare (Rosé et al., 2004, Section III).

31In Maple, after the command ”with (numtheory);” this result will be produced by the com-
mand ”convert (267137/2%0, cfrag);” and the subconvergent [0,3,1,12,2,1,1,1] can be evalu-
ated by the command "nthconver([0,3,1,12,2,1,1,11,7);”.

32E.g., by the Maple commands ”"gcd(11210,899) ;” and "gcd(11210,899) ;.
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Chapter 3

Physical Realizations of Quantum
Gates!

A set of necessary conditions to be fulfilled for the physical implementation of
quantum computation is given by DIVINCENZO’s checklist (DiVincenzo, 2000;
Perez-Delgado and Kok, 2009):

1. Qubits have to be well characterized and scalable.?
2. The standard states |0, ...,0) must be preparable.’

3. The duration of a gate operation must be much smaller than the decoherence
time.

4. A universal set of gates must be implementable.

5. The qubits must be measurable in order to be able to ‘read out the result” of
a quantum computation.

Remark: For quantum communication the following two requirements have to be
added:

e It must be possible to convert static qubits into flying qubits (typically photons).

e It must be possible to protect flying qubits against decoherence.

3.1 Quantum Optical Implementations

Optical systems currently constitute the only realistic proposal for long-distance quan-
tum communication and underly implementations of quantum cryptography.

(Knill et al., 2001)

DRAFT, June 26, 2009
!See the special volume Fortschr. Phys. 48 (2000) No. 9-11.
2Thus, 1-photon realizations of n-qubit systems should be considered as qudits with d = 2"
rather than n-qubit systems proper.
3This is still difficult for n-photon systems.

93
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3.1.1 Photons

In the CouLOMB gauge the free electromagnetic field E(x,t), B(x,t) is given in
the form

B(x,t) = curl A(x,t), E(x,t)= —%A(x, t),

Alx,t) = AD(x, 1) + (AW (x, 1))’

by some complex vector potential

AP (x, 1) = / (Zej(k) fj(k)> ¢i(elkli k) ik“{’,

where, for every k # 0, the vectors €;(k) form a

k
right handed orthonormal basis {el(k), €2 (k), —}

and thus guarantee div AH) =0.

Remark: We use SI conventions; see Apendix A.3.3 of (Liicke, edyn).

In the HEISENBERG picture of the quantized theory the classical fields E(x, t) and
B(x,t) have to be replaced by corresponding observables on the state space Hgelq
i.c. by operator-valued (generalized) functions E(x,¢) and B(x,t) to be interpreted
in the following way:

If & € Hgeaa is a sufficiently well-behaved (and ||®|| = 1) then

<(I>‘E(x,t)<b> resp. <<I)

B(x,1) q>>

is the expectation value for E(x,t) resp. B(x,t) in the HEISENBERG
state (corresponding to) @ .

Up to unitary equivalence these observables are given by

A~ ~ ~ ~

B(x,t) = curl A(x,t), E(x,t)= —aA(x, t),

. N A T
A(x,t) = AD)(x, 1) + (A<+> (x, t)) ,


file:edyn.pdf#edyn-A.1.3
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where*

A (x. 1) % (90132 /1 Tro ~ 0a (k| itk K
A (x,t) = (2m) "V ol /(Z i(k) a(k)> o (3.1)

and the a;(k) are annihilation operators® fulfilling the commutation relations’

),y () =0, [a,00), (a,0)) |- = 5, 60— K)  (32)

on a suitable dense subspace D, of the HILBERT space H containing a cyclic nor-
malized vacuum state vector () characterized (up to a constant phase factor) by

a;(k)Q =0 (3.3)

J=1

(in the distributional sense). This also fixes the inner product on H .
The operators a of the form
0= 3 [a,00(500) ak. i e 22®) (34
with’
la,a'] =1 (3.5)

characterize modes of the quantized electromagnetic field corresponding to the clas-
sical complex vector potentials
af Q>

ADxl) = <(A<+> x0)' 0

— <Q‘ |:A(+)(X’t)’ &TLQ>
= e ke [ (fjejaq fj<k>> e K

(3.4),3.1),3.2) V20K

(3.6)

DRAFT, June 26, 2009
4Thanks to the special choice of the factor in front of the integral we get the desired expression

H= 1/ (eO:E(x7t) CB(x,1): + L B(x,t) - B(x,1) ;) dx

2 Ho
for the HAMILTON operator, characterized (up to an additive constant) by
9 AN (x )= L [H A<+>(x,t)} .
ot h -

5See (Mizrahi and Dodonov, 2002), however.
60f course, the notation T includes the requirement

(@ | a;(k) D) = <(aj(k))Tq>‘<I>’> .

"Condition (3.5) is equivalent to de QH =1.
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With these modes the subspaces H(™ C H of n-photon state vectors may be defined
recursively by

HO 0 rec)
and

(1) def {&T o™ . M ey 4 mode} forn=0,1,2,....

Physical characterization of n-photon states: n (ideal) detectors but no more
can be made fire by an incoming n-photon state.

Modes a, , a, are called orthogonal, iff the states a;, (2, dL Q) are orthogonal, i.e. iff
la, , a,]- =0.

Fortunately, already classical electrodynamics tells us how photons are affected
by passive linear optical components:

The change of the mode a of a photon, caused by a passive linear opti-
cal component, is such that the corresponding complex vector potential
changes as predicted by classical electrodynamics.

3.1.2 Photonic n-Qubit Systems
Single-Photon Realization

For every n € N, using sufficiently many beam splitters a single-photon state a'
can be changed into a coherent superposition®

> A

be{0,1}"

of (essentially) orthogonal 1-photon states

which may be chosen as elements of the computational basis of a (simulated) n-qubit
system.

Remarks:
1. Since the single qubits of the 1-photon realization cannot exist independently
from each other we should better call the system a qu2™it system.

DRAFT, June 26, 2009
8For the special case n = 3 an example is illustrated in Figure 3.1.




3.1. QUANTUM OPTICAL IMPLEMENTATION 57
5 10,0,0)
510,0,1)
7 10,1,0)
710, 1,1)
75 11,0,0)
%g 11,0, 1)
7 11,1,0)

ZILL1)

Figure 3.1: Preparation of <I>(()3) in a single-photon realization.

2. Cascades of beam splitters may also be used to implement approximate mea-
surement of the number of photons:’
E.g., replace the single-photon input in Figure 3.1 by a 2-photon state and
direct the output rays into separate ideal detectors. Then the probability that
exactly two of these detectors ‘fire’ is 15/16 (=~ 94 %).

For such a choice of computational bases all unitary transformations can be (essen-
tially) effected by linear optical components. Thanks to Theorem 1.2.1 it is sufficient
to show this for n =1:

Assume, for instance, that that |0) and |1) describe horizontally polarized (almost
monochromatic) photons. Then the 1-qubit gates may be implemented by linear
optical elements corresponding to JONES matrices U in the following way:

A ]0) = X 110
—1£—>— Drt—=>-- D_E———>—1| >
2 | 2

|

y

|

|
Ao |1 ' ! A1
Xl N X [ X _A2b

All unitary transformations of the polarization state of a photon (with almost sharp
momentum) can be (almost accurately) performed by proper use of only \/2-blades

DRAFT, June 26, 2009

9See (Bartlett et al., 2002) for details. See also (Haderka et al., 2004; Waks et al., 2003).
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and polarization-dependent phase shifters.

General remark: Instead of performing the n-qubit transformations
Uy one may choose a fixed n-qubit transformation V(,) perform the

n-qubit transformations U(n) V(n) and interprete the result w.r.t. the

new computational bases {|b)' o Viny [b) = b € {0, 1}"} . Usually, in

practice, this freedom is tacitly made use of.

Exercise 13 Consider the single-photon realization of a 2-qubit system with:

4 ~ upper path and
10,0) = vertical polarization ,
4 ~ upper path and
100,1) — horizontal polarization,
4 ~ lower path and
11,00 = vertical polarization ,
4 ~ lower path and
Ly = horizontal polarization .

a) Show that the CNOT gate may be implemented by placing a 90° polarization
rotator into the lower path.

b) Show that the TCNOT gate may be implemented by applying a polarization
beam splitter — reflecting the vertically polarized components and transmit-
ting the horizontally polarized components — in the following way:

0600‘0,0> + Qo1 ’0,1> CYO()‘0,0> + aqq |0,1>

1o [1,0) + aq1 [1,1) o [1,0) + apr [1,1)

The single-photon ‘realization’ has a serious disadvantage spoiling the eventual
speed-up of quantum computation:

The number of optical devices required for the single-photon simula-
tion of n-qubit systems grows exponentially with n (Cerf et al., 1998;
Kwiat et al., 2000).

Therefore, we will consider only many-photon realizations in the following.
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Multi-Photon Realization

For given n € N we may choose a fixed!? set

{am; vell,....n}, je {0,1}}
of 2" pairwise orthogonal modes and consider the n-photon states
b) < af, -al, @ Vbe{0,1}"
as elements of the computational basis of a true n-qubit system.'*

Here, while the 1-qubit gates may still be easily implemented by linear optical
components, the physical realization of universal 2-qubit gates is quite a technolog-
ical challenge.!

Fock Realization

Another possibility is to choose some fixed set {ay,...,a,} of pairwise orthogonal
modes and consider the states

Ib) = [b)" Vbe{0,1}", (3.7)
where

e ]- A v A~ Un
’Vl,...,yn>F d:fﬁ (CLI) 1(0,1;) Q VVI,...,VnEZJr, (38)
1!

as elements of the computational basis of the n-qubit system.
The states dLQ of the single-photon realization for n-qubit systems form the
subset

{|b>F:b1+...+bn:1}

of the computational basis of the FOCK realization for 2"-qubit systems using the
2™ modes
ary+1 = ap , be{0,1}" .

Obviously, for n=1 the FOCK realization does not coincide with the single-photon
realization. Actually, 1-qubit gates like the HADAMARD gate cannot be implemented
by linear optical components, since |0>F represents the vacuum state. Nevertheless,
the FOCK realization has certain advantages as, e.g., those to be discussed in 3.1.4.

DRAFT, June 26, 2009
10Recall the above general remark, however.

11Of course, for n = 1 the n-photon realization coincides with the single-photon realization.
12Concerning recent progress in detector technologies see (Rosenberg et al.. 2005).
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3.1.3 Nonlinear Optics Quantum Gates

For both the n-photon and the FOCK realization of n-qubit systems the (universal)

~

CPHASE gate Aq(Sy)

E

is nonlinear in the sense that — contrary to the action of linear optics components
— the modes are are not transformed independently of each other.

If a non-linear sign gate NS is available,'? i.e. an optical one-way gate acting
according to'*

(@)’ + B (a")" +7(@)*) @ = NS = (a (@) + (") —v(a")*) Q

then the CPHASE gate can be easily implemented by proper use of linear optical
components like the HADAMARD beam splitters (with deflecting mirrors) charac-
terized in Figure 3.2.

10)

- —> —

+7510)

-

Figure 3.2: HADAMARD beam splitter.

One such implementation,' suggested in (Ralph et al., 2002), is sketched in Fig-
ure 3.3. The essential idea is exploiting two-photon interference (see Section 5.2.3
of (Liicke, nlqo)) at two HADAMARD beam splitters forming a balanced MACH-
ZEHNDER interferometer as sketched in Figure 3.4.

One would like to realize the necessary NS gates by means of optical nonlineari-
ties. Unfortunately, sufficiently strong nonlinearities of crystals are accompanied by
too strong absorption and therefore are not suitable. A way out may eventually be

DRAFT, June 26, 2009

13See (Sanaka et al., 2003) for an experimental realization.

14The gate is non-linear in the sense that its action cannot be reduced to a linear transformation
of the modes a .

15The modes a,, . are assumed to differ only by vertical translation and to describe photons with
(almost) sharp momenta.
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Figure 3.4: Action of a balanced MACH-ZEHNDER interferometer.

provided by electromagnetically induced transparency'® (EIT), discussed in Section
8.3.2 of (Liicke, nlqo).

Using beam splitters characterized by

|0) cos 1 |0) —e™?sin 9 |0)
-S> e s
N\ 4 A
| VARG @ | | VN (%2 |
N emiesimng 1) 1) 7 X cosd 1)
N L Rt

indeterministic!” NS,-gates, i.e. gates acting according to

(ai+pal+y@))0 — (al+pal+ay(@))o

DRAFT, June 26, 2009
16See (Ottaviani et al., 2006) and concluding discussion of (Munro et al., 2005a).  See also
(Munro et al., 2005b) concerning the use of ‘weak’ cross KERR nonlinearities.
17 A gate is called indeterministicif it acts correctly with nonzero probability < 1 not depending
on the input state and if, after its action, it is known whether the action was correct or not. An
indeterministic gate is called near-deterministic if its probability of success is near to 1.
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_________________ NS ...
1 1
1 1
1 AN / 1
1 \k /// 1
1 AN e 1
1 (&')T 0 N A/ 1
: V9 M P2 7 Dy :
: //// \\\ /7/ :
1 7 4 1
1 d AN .’ 1
: 1 N ©1 U3 > 3 :
1 - - 1
1 \\ 4 \\\ 1
: \\ ,// \\\\ :
1 N 7’ N

| —— \/{)2 :
1 1
L e e e e e e e e e e —, —— e — ———— 4

Figure 3.5: An indeterministic NS,-gate

if successful, can be implemented!® as sketched in Figure 3.5. According to (Knill et al., 2001,
Fig. 1) these gates act successfully iff a single-photon state is detected by D; and
the vacuum state is detected by D, . For

9, 129.5° 1 8
9, | = | 65.5302° | and 52 =1
o o 3
Vs 22.5 o 1807
we have x=-1 and the probability of success is 0.25. For

o 136, 53° - e
9o | = 62.25° and | 72| = » 92
9 —36.53° 3 ~11,25

3 ' Q4 102, 24°

we have x=i and the probability of success is 0.18082.

3.1.4 Linear Optics Quantum Gates'
Indeterministic Gates

Fortunately, using photonic memory and quantum teleportation, (deterministic)
CPHASE gates may by implemented using indeterministic ones:

DRAFT, June 26, 2009
18See also (Rudolph and Pan, 2001; Ralph et al., 2002; Hofmann and Takeuchi, 2002) and espe-

cially (Gilchrist and Milburn, 2002) for other possibilities.
198ee (Dowling et al., 2004).
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The essential observation, due to (Gottesman and Chuang, 1999), is the equivalence

o
+
—N
AN J\
(%
HIE
3
Il
H—+
w
=7

where

W=7

is the inverse of the BELL network and &, the state defined in 1.2.2. This equivalence
is obvious from the discussion of quantum teleportation in 1.2.2 and, thanks to

97

&l
Il

implies the equivalence®”

(s

ool

Therefore:

If the auxiliary 4-qubit state

oY) = (1@ CPHASE®1)(®, @ @)
is available then the (deterministic) CNOT gate can be replaced by ap-
propriately modified double quantum teleportation.

DRAFT, June 26, 2009
208ee also (Brukner et al., 2003) in this connection.
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If @1(34 ) can be stored for later use?! then it is sufficient to have a nondeter-
ministic gate producing <I>1(34 ) with nonzero probability from standard input. One
such possibility, obviously, is to replace the deterministic CNOT gates in the above

characterization of (I>}(34 ) by nondeterministic ones, if the latter are available.

In principle (Kim et al., 2001) , (deterministic) teleportation is possible by ex-
ploiting sum frequency generation of both type I and type II for a complete BELL
measurement (see, e.g., Section ref*nlqo-S-TWM of (Liicke, nlqo) for the explana-
tion of sum frequency generation). However, also indeterministic teleportation by
only partial BELL measurement — as, e.g. sketched in Figure 3.6 and explained by
Exercise 14 — may be useful for improving the probability of success, at least , of
an indeterministic CPHASE gate.

Figure 3.6: Partial BELL measurement.

Exercise 14 Consider a HADAMARD beam splitter for the orthogonal modes a; as ,
i.a a beam splitter acting as

R S R L
a1»—>—(a1—i—a2), CZQ'—>—<611—&2).

V2 V2

Show that the beam splitter, applied to the BELL states

1 . 1 /. R
:E(QiGICL;Q), \I/izﬁ(aij:aDQ

in the corresponding FOCK representation as sketched in Figure 3.6, acts as follows:

O

- %(m,of + % (|2,0>F - |0,2>F>) ,

Vo =0, +— ‘LO)F )
\1111 =V_ +— |0, 1>F .

According to (3.9) and Exercise 14 a so-called CZi gate, i.e. an indeterministic

CPHASE gate working with probability of success 1/4, can be implemented in the
FocCK realization as sketched in Figure 3.7 This gate succeeds if the (photon number
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Figure 3.7: Implementation of a CZi gate

resolving) detectors Dy, ..., D} indicate that the common state of the first two qubits
as well as that of the last two qubits is a single-photon state.?? The ancillary states

0,1) +[1,0) _ af +a]
‘1101 — - Q
V2 V2
may be easily prepared using a single-photon source and a HADAMARD beam split-
ter:

al

Near-Deterministic Quantum Gates

The construction sketched in Figure 3.7 can be generalized in the following way
using 4n ancillary qubits®! instead of only 4 (Knill et al., 2000; Knill et al., 2001):

DRAFT, June 26, 2009
2See (Pittman and Franson, 2002) in this connection.

22The dotted vertical lines indicate that the effect of the corresponding CPHASE gates on the
output qubits can be achieved via LOCC (Local Operations and Classical Communication).

23Note that the single-photon state W, is entangled when interpreted as FOCK realization of
a 2-qubit state.
24The case n = 2 is of special interest (Niclsen, 2004).
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Let ag, . . ., G, be pairwise orthonormal modes describing photons with (almost)
sharp momenta and prepare the first 2n ancillary qubits in the state

2n
o € — (H )( I1 aT>Q,
n+ v= p=n+j+1 g

(instead of Wy;). Let F be the linear operator on Hg, .
Fiy Q = Q and

characterized by

A2n

P a for a L {ag,...,a,}, .
@) T\ A e G, fora =y, k€ {0, n), (3.10)
where — as in Section 1.2.4 of (Liicke, nlqo) — we denote by Hao the smallest
closed subspace of Hgaq that contains 2 and is invariant under a ao, .. aQn. Then,

as explained in connection with the single-photon simulation of n—qublt systems, the

transformation A R
ay = Fya, Fioy Vv e {0,...,2n} (3.11)

can be implemented using by linear optics.
Remark: For n+ 1= 2" and®
k), =alQ VYke{o,...,2m -1}

the corresponding state transformation

v DICHLD ML CREARSY

=0

k), —  Fulk),,

m

simulates the m-qubit quantum FOURIER transform.

Exercise 15 Using the CAMPBELL-HAUSDORFF formula®®
eABe A = exp(ad ;) B, (3.12)

where

show the following:

a) T T
e—za,jajgodk etiajaje e+1<,05j,k ar v],] c {O7 o ,271} RS R.
DRAFT, June 26, 2009

ZRecall (1.12).
26Compare Footnote 50.
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b)

—ilal aarala )0~ ti(al agtala L
¢~i(al aataz a1)8 aq eti(alaatazan)o cosfay + isinf ay Vo eR
(ot oot Vo o aifatanata L N .
e i(a] aa+af a1 )0 a9 e“(“l“ﬁaz‘“)e = ¢sinfa; + cosfas

A~

c¢) Fiy) is a unitary operator on Ha, . a,, -

Since
J . . j n
[ (Foeiil) 5, T(30e vl
n) v &) lu
v=1 (310) v=1 \[,=0
n J
= H<+wn+1 d;y) Vjied{l,...,n}
l1,...,lj= ov=1
and
j A A
11 <F<n> duFGS) = Z Hew"“
v=0 10,0+l j=0 v=0
n J+1 o,
= Z He_zﬁl etiv Tl a;ry Vjied{0,...,n—1}
l1,...,lj+1=01/:1
n i .2 2
= Z Hezﬂl”eﬂy +1lva;, Vie{0,...,n—1},
lfyyeonslf=0v=1
we get
F(n) <Oéi+ﬁdg) (I)‘EZl)e
1 2n n
— AT)Q + BF, ( AT)
— | « a), a,
n+ ]' < l/lgl—l 1—10

+a Z ANo,....No < ) ( a;) Q (3.13)
o, TVn=0 v=n+1+No+...+ Ny

0<Ng+...+Np<n

B A, (f[( “i g T>N> ( ﬁ a,t) 0

NQ,...,NTLZO =0 v=n+No+...+Np,
0<Ng+...+Np<n

with suitable Ay, .. n, € R, not depending on a,3 € C. Now, if the number
N, of photons of mode a, in the state ﬁ’(n) (a 1+ ﬁdg) F(n)(b( ") s checked for all

tele

v € {0,...,n} by projective measurement then:
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o [f
0<Nog+...+N,<n (3.14)
then the state is projected onto

n

~ ~ B P ~

—i 2T N\ At

AN0,~~-,Nn (Oé 1+ ﬁ <H e ntl J) a’n+N0+...+Nn> BNO,...,Nn Q s
J=1

where
n

~ def A\ Ny
ANO,.‘.,Nn - ANOr“:Nn H (alf/) ’

v=0
2n

- def ~
Bn,,..N, = H al .

v=n+1+No+...+ N,

e The probability for (3.14) — thanks to unitarity of F (n) — is 1
n

Since the phase factor H?:l e i I N s fixed by the measurement result, this shows:
With probability arbitrarily close to 1 the state (a 1+0 dg) Q) with un-

known o, 3 € C can be teleported®” into (a 1+ 6an+N0+ N ) Q with

random Np, ..., N, fulfilling (3.14) resulting from — typically destruc-
tive — measurement of the corresponding photon numbers in the state

F(n) <Oé i -+ ﬁdg) F(n)q)EZI)e .

In order to implement a CZy2,(,+1)2 gate, i.e. an indeterministic CPHASE gate
working with probability of success n*/(n + 1)*, 4n + 2 pairwise orthogonal modes

agy - - ., Qan, by, . .., bay, are needed. ag resp. by is used for the FOCK realization of the
first resp. second input qubit of the gate. The ancillary FOCK qubits corresponding
to the modes ay, ..., a9y, b1, ..., by, have to be prepared in the 4n-qubit state
X def (n)
\Ijz(;m?l)c = H S tele tele ’
v,p=n+1

where \Iltele is defined similarly to (I)Ed)e with modes a, replaced by modes b, and

S¥M) means action of the CPHASE gate on the pair of FOCK qubits corresponding
to the modes al,,b#. Defining F (n) Tesp- A N, Tesp. BNO,...,Nn similarly to F(

resp. ANO’“,,NH resp. BNo,..A,Nn with a-modes replaced by b-modes and

> def & ,‘277" S\ A

Jj=1

(3.15)

n

~ def ~ i 7t
tos(N) = <a1+ﬁ<He s ]> bn+No+ +N>

Jj=1

DRAFT, June 26, 2009

2TSee (Fattal et al., 2003) for an experimental demonstration of the basic version.
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we get
Foy By (014 gal) (/1 + 58 ) 9)
2n
= I s (F(n) (a 1+ ﬁa$> @EZ&) ® (F(’n) (o/ 1+0 135) \1/§”f)
v,pu=n+1

and hence, by (3.13):

Foy (1 +paf) (o 1+ 8)) 9422)

2n 2n n
- I s (\/;—H(:H aL)Q + \/nﬁ_ﬂ A(n)<£[al>9

v,u=n-+1

NoyerriNo =0
0<Ny+...+Np<n
O[/ 2n " ﬁ/ R n o)
® ( b,,)Q + P ( by)Q

n
+ Z AN N,’LAI[g ,,,,, N;f;/,ﬁ'(N/)vaé ,,,,, N Q>

Ng,...,N),=0
0<N{+...+ N <n

Therefore, if the numbers Ny, ..., N,, N§, ..., N} of photons in the modes ay, . . . , Gy,
bo, . . ., b, are checked for the state F(n) F(’n) ((a 1+ 6&3) (o/ G 58) @5@) by pro-
jective measurement then:

o If
0<No+...+N,<n and 0<Nj+...+N,<n (3.16)

then the state is projected onto a state with the factor

2n
def Ay
Vo =TT S tap(N)ty 5(N) Q
v,u=n-+1

_ S«(n+N0+...+Nn,n+N(’)+...+N;L) ta,ﬁ(N) t,o/,ﬂ’(N,) 0

s

which may be easily transformed, using only linear optical components, into
the desired output

500 (v 1+ Ba') (o/ 144 5T> Q0.

e The probability for (3.16) is n?/ (n + 1)°.

Especially for n = 2, according to (Knill et al., 2001, Supplementary Informa-

tion, Fig. 4), the ancillary state CIDEZIL can be prepared (indeterministically) using

only linear optics as sketched in Figure 3.8.
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al 0 1
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Figure 3.8: Preparation of ®

3.2 Measurement-Based Schemes for Quantum Com-

putation®

The implementation of near deterministic CPHASE gates just described shows some
interesting deviations from the conventional network model:

e Many ancillary qubits are used in addition to the input-qubits.

e The total state of all the qubits is suitably prepared using easily implementable
deterministic gates and indeterministic gates, the latter acting only on the
ancillary qubits.

e Then the desired output state can be transported onto the output-qubits using
only (photon number) measurements and applying some easily performable
final correction depending on the measurement results.

Meanwhile it turned out that for every n-qubit gate (n € N) and standard input
state the corresponding output state can be efficiently produced,? e.g., as follows
(Childs et al., 2005; Walther et al., 2005; Nielsen, 2005):

1. Prepare anxm-qubit cluster state® with sufficiently large m in the following
way:

DRAFT, June 26, 2009
28Gee also (Browne and Rudolph, 2005; Rudolph and Virmani, 2005; Varnava et al., 2006;
Raussendorf, 2005) and (Lim et al., 2005).

29Concerning the preparation of explitly known states see (Kaye and Mosca, 2004).

30We use the notion cluster state in a more general sense than originally introduced in

(Raussendorf and Briegel, 2001; Raussendorf, 2003).
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(a) Prepare n x m qubits in the states

|+> def |0>V,u + ’]‘>I/M
v \/i )

and imagine them arranged in a n X m-matrix scheme:

(v,p) € {1,...n} x {1,...m},

)1 e o [P
o1 oz - [Hlom
)1 Hhn2 0 Ham

(b) Join all horizontally neighbouring qubit states and certain vertically neigh-
bouring qubit states, depending on the effective network action desired,
by lines respecting the rule that every state attached to a vertical line
should have only one neighbour attached to a vertical line. Writing

(v0) instead of |4,

m

OROROROR0
DRORORORE
O OROROR0)

as an example forn =3, m=5.

we may get, e.g.

(c) For every (horizontal or vertical) line (bond) apply a CPHASE gate to
the pair of qubits connected by the line.

2. Once the cluster state is prepared certain projective single qubit measurements
are performed on the qubits corresponding to the first row (qubits 11,...,nl).

3. Once the qubits of the v-th column have been tested certain projective sin-
gle qubit measurements, depending on the outcome of the previous measure-
ments®' (and the final output desired), are performed on the qubits corre-
sponding to the (v + 1)-th column.

4. When the measurements on the m — 1-th column are performed the n-qubit
system corresponding to the m-th column is left in the desired output state up
to known single-qubit transformations depending on the results of the previous
measurements.

5. The deviation from the desired output state may be either corrected or may
be taken account of by appropriate change of the computational basis.
DRAFT, June 26, 2009

31Measurements the outcome of which determine the choice of subsequent measurements are
called feed-forwardable.
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A fascinating aspect of such measurement-based schemes for quantum computation
is that the universal CPHASE gate is needed only for preparing the cluster state
and for this purpose an indeterministic implementation of the phase gate is sufficient
(Nielsen, 2004; Nielsen and Dawson, 2004; Chen et al., 2006):32

Every cluster state can be prepared by successively applying single-bond and/or
double-bond operations:

I. Single-bond operations: E.g. for the case sketched in Figure 3.9 the
two teleportations (measurements of Ny, N1, Ny resp. N, N{, N}) are at-
tempted one after the other.

O-0O-0-0-0
O-O-&-©
O-O-®

Figure 3.9: Trying to add qubit C' with a single bond.

The teleportation that does not affect A is tried first. If it does not suc-
ceed one has to restart with a newly prepared qubit C'. If it does succeed
then the second teleportation is tried. If the latter also succeeds C' is
added with a bond to A. If it does not succeed then a projective single-
qubit measurement w.r.t. the computational basis has been performed
on A and this qubit has to be removed from the cluster and single-qubit
correction have to be performed on the qubits connected to A (for the
sketched special case only one) depending on the measurement result
indicated by the corresponding detectors. As soon as the size of the
cluster has been changed by this procedure we say that a single-bond
operation has been performed. Thus:

A single-bond operation adds resp. removes a qubit with prob-
ability 2/3 resp. 1/3.

IT. Double-bond operations: E.g. for the case sketched in Figure 3.10 one
first try to connect D to C' by a single-bond operation. If this adds D
to the cluster we apply CZ4/9 to the pair B, D . If the corresponding
teleportation not affecting B fails then D has to be removed from the
cluster and we have to restart with a newly prepared qubit D . If the
first teleportation succeeds also the second teleportation is tried. If the

DRAFT, June 26, 2009
32Moreover, such schemes circumvent the problem of programmable deterministic quantum gate
arrays (Nielsen and Chuang, 1997).
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O-O-O-0O-0O
O
O-O-@-®

Figure 3.10: Trying to add qubit D with two bonds.

latter succeeds D is connected to both C and B if not then B and D
have to be removed from the cluster. As soon as either C' or B has
been removed or D has been connected to both C' and D we say that a
double-bond operation has been performed. Thus:

A double-bond operation adds resp. removes a qubit with

probability % : % resp. % + % . % .

In order to create the cluster, after every double-bond operation that removed a
qubit a single-bond operation can be applied. Then:

On average, 2N successive operations add at least

(e (2

qubits to the cluster.

Easier implementable indeterministic CPHASE gates®® with lower probabilities
of success are sufficient if the cluster is built from microclusters in which a single

qubits are connected to several dangling qubits in order to allow for multiple gluing
attemps.**

3.3 Cold Trapped Ions®

Of all the proposed technologies for quantum information processing devices, arguably
one of the most promising and certainly one of the most popular is trapped ions.

(James, 2000)

DRAFT, June 26, 2009
33Gee, e.g., (Gasparoni et al., 2004; Zhao et al., 2005).

34See end of (Nielsen, 2004).

35Gee (Buzek and Sasura, 2002; Ghosh, 1995; Wunderlich and Balzer, 2003).
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3.3.1 General Considerations

One of the earliest proposals to fulfill DIVINCENZO’s requirements for quantum
computation is the following:

1. e Qubits are identified with ions of some specified kind being in a superposi-
tion of two specified (at least) metastable energy eigenstates |g) resp. |e)
representing the computational basis states |0) resp. |1). Typically, |g)
is the ground state.

e The ions are bound to specified places inside an ion trap and their col-
lective oscillation is cooled to the quantum mechanical ground state.

2. The states |g1,...,8,) = [0,...,0) may be prepared by applying Laser ra-
diation tuned to the transition of |e) into a rapidly decaying higher energy
eigenstate.

3. The decoherence time is of the order 107! seconds while the duration of gate
operations is of the order 10~ seconds.?

4. e 1-qubit rotations are implemented by laser pulses — of appropriate du-
ration and phase — tuned to the transition between |g) and |e).

A

e The controlled sign gate A; (SW> is implemented by a suitable sequence
of laser pulses exploiting one of the collective translational modes as data
bus in the following way:

(i) A first pulse on the control qubit (Ion j;) acts according to

1800 185)|0)0sc
osc ) osc 317
|ej1>|0>osc — -1 |gj1>|1>osc : ( )

(ii)) A second laser pulse on the target qubit (Ion jy) — tuned to the
transition of |g) into an exited energy eigenstate |é) different from
le) — acts for b € {0, 1} according to

b
|gj2>‘b>osc — (_1) ‘gj2>|b>osc ) (318)
|ej2> |b>osc = |ej2> |b>osc N

(iii) A third pulse of the same type as used in (i) acts according to

183 |0)0se = 1831]0)0se
osc . 0sC 3.19
|gj1>|1>osc — -1 |ej1>‘0>osc ° ( )

These laser pulses have no effect if the control qubit (Ion j;) is originally
in the state |g;,). On the other hand, if the control qubit (Ion j;) is
originally in the state |e;) then the action is as follows:

DRAFT, June 26, 2009
36See, e.g. (Nielsen and Chuang, 2001, Fig. 7.1) for a comparison with other implementations.
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Figure 3.11: A linear PAUL trap

— The first pulse transfers this information into the data bus by exciting
it to [1)_.. and applies —i &y to the control qubit.

— Then the second pulse multiplies the |g;,)-component of the target
qubit’s state by —1.

osc

— Finally, the third pulse returns the data bus into its ground state and
acts on the |g;,)-component of the control qubit’s state by —i 7 , once
more.

Obviously, the resulting action is that of a A, (5}) gate.

5. Measurement of the final state of the computation may be done by irradiating
by continuous laser radiation tuned to the transition of |g) into a rapidly
decaying higher energy eigenstate. Then only those ions ‘found’ in the ground
state show strong fluorescence.

All this will be explained in more detail — for the special case®” of “°Ca* ions in a
linear PAUL trap — in the subsequent sections.

3.3.2 Linear PAUL Trap
The linear PAUL trap used by the Innsbruck group is sketched in Figure 3.11.

DRAFT, June 26, 2009
37See http://heart-c704.uibk.ac.at/quantumcomputation.html
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There are four rod electrodes, namely along

Cl déf {513'797 :y:_ro7zzo’$€{_%’+%}}’
CQ déf {SL’,Z/’ :Z:+T07y:07x€{_%7+%}}7

( z) eR

( z) eR
C; € {(zy2)eR:y=+4ry, 2=0, z € {-% +u}}
C, et {(x,y,z)eR:z:—To,y:OaxE{_%}v""%}}}’

and two ring electrodes (end caps). The electric potential of the rod electrodes
along C; and Cz is*® ®(t) while the rod electrodes Cy and C4 are grounded. Both ring
electrodes have the constant electric potential ®,5,, > 0.

Trapping in Radial direction

If the rod electrodes were infinitely long and infinitely thin then they would con-
tribute the electric potential

o 2 2
Pigeat (7, Y, 2,1) = - (1 + A > if ®(t) = ¢y = const

2
2 TG

since this fulfills the LAPLACE equation as well as the boundary conditions along
the rods. If

O(t) = Py cos(Q2t), Q=16 — 18 MHz (radio frequency),

then the quasi stationary approximation

P Ot 222
O, (x,y,2,t) =~ m(l—l—y 22)

2 rg
2 2

2
27r;

= B cos(Qt) 2 18y cos(Q) (3.20)

can be used near the center of the trap — also for finite rods, if sufficiently long.

The evolution equations of a particle of mass m and electric charge ¢ in the
electric potential (3.20) are®

g(t)+zﬁ% cos(Qt) y(t) = 0, (3.21)
z@s)—zw‘; cos(Qt)z(t) = 0, (3.22)
#(t) = 0

DRAFT, June 26, 2009

38Note that static electric potentials cannot have minima in regions free of electric charge.

39Tn the Innsbruck experiment: @y ~ 300 — 800V , ro ~ 1.2mm.

)
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With

¢ (3.23)

equations (3.21) and (3.22) become equivalent to the special cases

(d%) y(Q) +2b cos2Q) y(¢) = 0, (3.24)

((%) 2(C) —2b cos(2¢) 2(¢) = 0 (3.25)
of the MATHIEU differential equation

((%) y(¢) + (a +2b cos(2 ())y(() =0. (3.26)

The general solution of (3.26) is*°

y(C) = ZC'Qn ()\+ eTHC gt2ing + A 6—u46—2ing) :

neL

with general integration constants AL (to be adapted to the initial conditions) and
certain constants Cs,, and u depending an a,b. We are interested in stable solutions,
only, and therefore have to require

w=10, [eR.

Then

y(¢) = ZCzn ()\1 cos<(2n +5) C) + Ao sin<(2n + 7) C)) : (3.27)

nel

where
def

AN A, =i — ).

Inserting this into (3.26) gives the recursion formula

a— (2n +
an+2 - % an + Czn,Q = O . (328)

Defining
det Cop def def

G2n__7 A:AIC(]a B:)\QCO
Co
and exploiting the well-known theorems for sin and cos we can rewrite (3.27) in the
equivalent form

y(€) =YT(¢) +,(C),

DRAFT, June 26, 2009

10See (Ghosh, 1995, Section 2.3).
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where:

YEQ) € A cos(BQ) £ B sin(50),
5, = Z (YH(Q) (Gan + G24) cos(2n5¢) = Y7 (C) (Gan — G_a) sin(21/()) -

n=1
For sufficiently small*! [b] one may show:

1. Solution of (3.28) gives a stable solution (3.27).
2. The micromotion §,(() is negligible.

3. The corresponding statements hold also for z(() .

In the following the micromotion will be neglected.

Trapping in Axial Direction

The positive potential of the ring electrodes in Figure 3.11 servers to confine positive
ions also in axial direction. The additional (time-independent) electric potential
contributed by these electrodes is

2
(I)”(J},y, Z) ~ gq)ring (l%) for ZL’/.TO < 1,

where £ is some geometric factor of order 1 characterizing the contribution of @,
on the center of the ring electrodes.

In the Innsbruck experiment we have
Dring =~ 2000V, ¢~ 5mm
and
m o 2
2

Wi T

q®(z,y,2) =

with w
2—9” ~ 500 — 700kHz  for “*Ca’.
™
Since w, is definitely smaller than 3( ~ 1,4 — 2 MHz, in this experiment, it is
sufficient — for what follows — to consider only the motion along the z-axis in the
potential contributed by the ring electrodes and the repulsive Coulomb potential of

the ions. The total mechanical potential for N identical ions then is (approximately)

N s N

. m q

V(xlw--’fN):EWiE x?+47reo g
J=1 k

1
Al ]
<k

(3.29)

DRAFT, June 26, 2009

4Note that b ~ q/m.
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Mean Values of the Ion Positions

For j € {1,..., N}, let &; be the mean value of the j-th ion’s z-coordinate. Obvi-

ously, for

def . def /. -
x:e('7"17"'71:]\0:1"é (xla"'7$N)

the potential of the N-ion system has to be minimal:

(%V(xl,...,m)) =0 Vje{l,...,N}. (3.30)

I:L'::E
Without loss of generality we may assume
T <To<...<In. (331)

under this condition (3.30) is equivalent to

N N

1 1
X -3 ——— o+ Y ——— =0 Vje{l....N}, (3.32)
’ k,j=1 (Xk - Xj>2 k,j=1 (Xk - Xj)z
k<j k>j

where*?

2 3
def def q
i =&/, = (—) : (3.33)

2
4mey mw?

For N < 3 the solutions are easily determined:
N=1: X1 = 0,

N=2: X;=-¢/1

— 3/1
1 X2_+ 4

N=3: Xi=—{/1, X=0, X;=+{/3.
For N > 3 the X; have to be determined numerically.

Of course, the distance between the ions is minimal at the center of the trap.
Numerical calculations show that

. 2.018
Axrnin ~ N0_559 Y
(James, 1998). Therefore, in the Innsbruck experiment, the overlap of the ions’ wave
functions is negligible?® and the ions are individually addressable by laser beams.

DRAFT, June 26, 2009
“2For 90Ca™ and %= ~ 700kHz: ~ ~ 4.85 um.
43Recall Footnote 17 of Chapter 1.
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Collective Oscillations

Near its minimum the potential (3.29) may be approximated as

N
def TN
Viey,...,on) = Vg, qn) = §W§ > Vikdjan,

jk=1
where

q; .CL’]'—]VZ']' Vje{l,...,N}, (334)
def 1 o 0 .
Vie = Viey, ..., Vike{l,...,N}.
i mw? (&Uj Oxy, (@ $N)) loes J { J
Explicitly, by (3.29) and (3.33), we have
N
1+Z|X ; for j =k,
Vi, = Vi =T (3.35)

2

for j # k.

X — X,
The corresponding system of evolution equations is
Gj(t) +w; Z Vik qe(t) = 0. (3.36)
k=1

Since the matrix (V};) is positive and symmetric, there is an orthonormal system of
eigenvectors

Cn
Cl: , lE{l,...,N},
Cin
of this matrix in R with positive eigenvalues:
Vit ... Vin Cn o\ 2 Ch
: : : ( l) : le{l,...,N}.  (3.37)
wm
UN1 R VNN OZN

Cin

Hence, every solution of (3.36) is a superposition

N

0t) =3 (W ™0 + A ) (3.39)

of the special collective motions (eigenmodes)

QJ('ﬂ) (t) 4 Cyj et (3-39)
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The first two eigenvectors may always be chosen as

1 1
VN
1
1 X, (3.40)
C2 = 5 5 with (I)Q = \/§wx .
VXE+ .+ XY X

Proof: (3.35) directly implies Zk 1 Vi = 1 and, therefore, (3.37) for I = 1 with
w1 = wg . On the other hand, we have

N N

2X;
ZijXk = X+ Z Z IEem—
=1 (3.35) JA=1 ‘Xl | jEl=1 |Xl — Xj‘
X — X
= X;+2 371
751 1 |Xl
N 2
= =+ ——
(3.31) X Z “ | X, - X,|? 2 X, — X;[?
L<J 1>j
= 3X;.
(3.32)

The latter implies (3.37) for | = 2 with @&y = V3w, . 1

Then (q(l) ...,qg\})) is called the center of mass mode and (q§2), e ,q&?) the

breathing mode.

3.3.3 Implementing Quantum Gates by Laser Pulses
Quantization of the Collective Oscillations

Using the generalized coordinates
Qu(t) = R (N et N e (3.41)
we get

t)=d;+ Y CQt) Vje{l,....N} (3.42)

for the z-coordinates of the ions and

L=75>" (@ -t Q?) (343

=1
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for the Lagrangian corresponding to (3.36). With the canonically conjugate mo-
menta
‘ def 0

P, ——L=mQ;
j 20, mQ;

we get the Hamiltonian
1 Y m &
H(Q,Pt)=— E P? 4+ — E 020)?

and standard quantization of the system amounts to selecting a (normalized) ground
state (vector) |0) . and replacing the @, P, by operators

A h X X
Q = (az+a;>,

2m CU[

. [Thmp 7+ .
B = — n;IWI (dl_dl>7

. A . X . <t .
with annihilation operators a; and creation operators a, obeying the canon-
ical commutation relations™!

osc

(3.44)

[ala gl'k} = 0 ) [alv éL:| 3 = 5lk (345)
and the FOCK condition

ar |0),

osc

=0 Vie{l,...,N}. (3.46)

The quantized Hamiltonian, then, is

1 il mN
]:-Iosc:_ P2 -~ V2‘A2
TPSLEE PR

G 1
= Sy (a}al+§) (3.47)

and a maximal orthonormal system of the state space (for the quantized oscillatory
motion) is given by the FOCK states

ef 1 <\ ™
|TL1,‘..,TLN>OSCd: \/ﬁn (aj) |O>osc , MNi,...,ny € Ly, (348)
-

DRAFT, June 26, 2009
44 These commutation relations are easily seen to be equivalent to

(@1, Q1]- =0, [P,P-=0, [Q)P:-=ihoy.
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fulfilling L
Q agna, .. N o = T [P0, - N e - (3.49)

The corresponding observables for the x-coordinates of the ions are

N
j:j - i’j iosc +ZClj Ql(t)

=1
N
. n . st
N T q/—vc'<&—|—d>. 3.50
(3.44) ilo ; om I\ % l ( )

Of course, a more detailed description of the ions’ motion would require inclusion
of the modes describing radial oscillations.

Laser-Ion Interaction

In the following we assume that all the ions are “°Ca* ions. Moreover we select a
special mode ézo (typically [ = 1 or 2) as data bus. All other modes are assumed
cooled into their ground state and will not be included in the description. The
Hamiltonian describing the collective motion of all ions the the internal state of the
j-th ion not interacting with an external electromagnetic field then is

. T x
hany (g i, +3) + Be, le){(e1] + Eq, lg;) (8] ,

EBe;—Egj Ee;+Egj

=1 (le;Xe; |~ lgi Xei N+ —2g— (|ej) (e;] + [8;) {(g;])

N S/

=ling

where L., resp. E, is the energy level of the qubit state |e;) resp. |g;). This
Hamiltonian describes the same time evolution as

~

R hwn. i
def Y Gy + iy iy Guy » (3.51)

HOj:_ 2

where 7 Bai
def Le; — L49) o def
woj = — 55 Ou = lgs) (gl —lej) eyl - (3.52)
(3.52) will be used in the following. We assume the laser radiation to be strong
enough for the exterior field formalism to be adequate (see, e.g., Sections 7.1.1
and 7.2.1 of (Liicke, nlqo) in this connection). Interaction with the classical laser
radiation will be described in the dipole approximation® by adding

Vgt E((:zj,o,()) t) ,

DRAFT, June 26, 2009
451n the quadrupole approximation we would have to add

Vg ((fj V) E(x’,t>)

|r’:('it]~,0,0)
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where
el o electric charge of the valence electron
g, def { observable of the valence electron’s
T position relative to the center of the ion,

E(x,t) & external electric field at position x and time ¢ .

We assume that the exterior field is of the form
E(X, t) — EO (efi(wL tka.x+¢v)) + 6+i(u}L tka-x+dv))> ) (353)
Replacing r; by

Lo B Tine = (&) (gsl + les) (e ) £5 (1g5) (5] + lej) (e5)

. —def def .~ —def
9 = Teg,j = 9 =

. — ——
= (g | Tje5) lgi)lej|l + (g5 | Tje;) |g;)(e;l

we get
Vi = —ta (regs 0 + (teg) 7 ) - Eo (e_i(% b=y (g 3, )65
4t (wor t=mg5 (a1, +&§0)+¢j)) ’
where

def h def ~ .
mojzki\/zm@l ;0= =k
0

In the interaction picture (see, e.g., Section 7.1.1 of (Liicke, nlqo))the time evolution
is determined by o o

‘7]1 — e+% Hoj t‘7j 67% H()j t
instead of Hoj + Vj . Using the CAMPBELL-HAUSDORFF formula,’® here in the form

A

+£ﬁ0'tA' *if{O‘t_ N .
eTn BtV e M0t = exp ad%HOjt Vj

and s o
[Hoj, ay) - = +hay,
[ﬁ0j7alo]— - _hwlo aloa
. N hwoj .. A
[Hoj, 67]- = 5 L 635,07
= :]:hu)()j 6]i,
we get?”

~

V6= —ga (reg; - Eo o ettt £ He.) (e_i(QLt_’”OJ' (a1 e 0 "4t )+95) + H.C.) -

DRAFT, June 26, 2009
46Recall Exercise 15.
4By ‘H.c.” we denote the hermitian conjugate of the preceding term.
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Hence in the rotating wave approzrimation,*

of the higher frequencies % (wy, + wo;) :

i.e. if we neglect the contributions

- h iy (G, e o 't H. ; .
Via-ole s (fg ) miton—wot +H.c.,

where®

of 2 b
/\j d:f _ﬁ Qel Teg,j EO e i . (354)

Using the BAKER-HAUSDORFF formula®

[fl, A, B]_} = [B, [fl,lf)’]_] =0 = B = alABl- A8 (3.55)

and (3.45) we get

. (= i@yt ) . Cxt o tiapt . x —i@p t 1,2
€+zmoj(azoe HHe ) orimgjag e 0T dimgjarg e 0T =g gy

Therefore, if

Wy, — Woj = k’(I)lO s ke 7, (356)

then the rotating wave approximation becomes

<t \H y
oy By S e () @) i,
‘/;I ~ >\] 5 O';r e 2 moj Z (Z ?7[0])“ Y /1/' VO‘ €+Z (p=v=F) woj ¢ -+ H-C~

p,v=0
For sufficiently small A\; non-resonant transitions and hence terms with p—v—k # 0
may be neglected. Then we may use

ES AL SRS
/\+ A A A
. Aj 57 (alo) Fi(ay, ai,) +Hee. for k>0,
v P (3.57)
A 50 Fi(ay, a) (a,) " +He.  for k>0,
DRAFT, June 26, 2009
48Gee (Aniello et al., 2003) for some criticism of this approximation.

4Tn the quadrupole approximation (recall Footnote 45) we have to add
def 2 . .
Nj = =g e <ej’(7“j 'Eo)(Tj'kL)gj> :

S0For operators in finite dimensional vector spaces (3.55) may be proved as follows: Since
eMBe M and exp (adA A) B fulfill the same first order differential equation and initial condition

(for A = 0), the CAMPBELL-HAUSDORFF formula (3.12) holds for arbitrary A, B. Therefore, also
fl()\) déf e/\AeAB

and L
£2(N) def A(A+B)+5 [A.B]

fulfill the same first order differential equation and initial condition (for A = 0), if the Lh.s. of
(3.55) holds, and hence f; = f5.
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where

A oxtoxoy def
Fi(ay, a,) = e 2%] (i 7o, |k|z ;) vl (v + [k])! (3.58)
Multiplying le from the right with
1050 = Z ‘n>osc osc<n|
n=0
and inserting
57 = lej) (gl
finally yields
1 B . ot
I _ n,k An.k n,k An.k
V= 52(@ Ay (Qj Ar ) ) (3.59)
n=0
with
Amk déf { |ej><g]| ® |n + |k|>osc osc<n| fOI' k Z 07 (3 60)
’ l€j)(23] © [Mogc osd + K| for k <0,
and
nk  def PN n! k
Qj = )\je g (277[03') mlz' |(nloj) , (361)

Lo (x) o Z (o) (n+a (generalized LAGUERRE polynomzals) .
" e V! n—v

Outline of proof for (3.61): We have to show

<t v+|k|

oo a &
2, (o ) e L) I+ bl
—z N .,

v=0 vl (V + ‘k|) OSC osc n + |k| 0sC osc
T \Y x vtk
—c n n _ n |

v=0 V! (V + |k|)' 0SC osc ’I’L + |k-‘ o@c osc

Since
T\Y xo\v <t x X
(%o) (a’lo) - (alo alo> (ago ap, — ) a 1o Olo (n— 1 )
(see Equation 1.63 of (Liicke, nlqo)), the first of these equations follows from
stk L 1 Kl
(alo) (A1) In)pse = (alo) nn—1)...(n—(v-1))n),
n(n—1)...(n— (v = 1) /O 0+ k)

osc

(3.48)
n!  (n+k|)!
= (n+ k) (n—v)

0 else,

7+ [kl forn=v
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87
the second from
(8) o) ™ i o = Imdoeoncnl (&) o)™ o+ e
ZT V-Hkl X v T
(osc<n + ‘k| ‘ (alo) (alg) TL> \n>osc
nt (n+ k)
_  E)! (n =) n)e. forn>wv
0 else . |
The propagator in the interaction picture is the exponential®®
e h Vit — Z(cos (‘an 2) (Bnk + C’" k>
" (3.62)
n.k n.k —“I)k A,k
_ZSHl(‘Q 2)(,4 ]+HC>)+Dj ’
where o
By & arg () -5 3.63
b = 28T 5 6150 ¥ ‘ | (3.63)
and
prk def { lej)(es| ® [+ |K])ose osm + k]| for k>0,
’ &) (€] @ Mg sl for k <0,
éﬂ’k déf { |g]><g | ® |n>osc osc<n| for k Z 0’
’ g (gl @ |n 4+ |k|)ose o + |E]|  for k <0,
(k-1
Ank  def -
DJ‘ - k|—1
Z ‘gj><g-7‘ ® |n>osc osc(nl for k < 0.
. n=0

Outline of proof for (3.62): By (3.60) we have

( An,k)f _ { lg5)(ej] @ M)y oo + k]| for k>0
’ |g;)(ej| ® [n + |Kl), n| for k<0
DRAFT, June 26, 2009

SlUsually (7"

SC OSC<

is called the RABI frequency for the transition

187) @ |1+ [K)oge = lej) @ [n)g. 1 k<0,
resp.
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and therefore

inik jnok
AT AL = 0,
PN T .
AP (APR) = b B, (3.64)
N o A
(A;_ll,k) A;}Q,k _ 6n1n2 C;_h,k
for £ > 0 as well as for k£ < 0. This implies, first of all,
i v i t (omk in
e E Vit — IT exv <_¢ 3 (Qj’k AP 4 Hc)) . (3.65)
n=0

Moreover, (3.64) implies
Qn,k An.k & 2 2 Bn,k On,k‘
i A e )= ;e )

2v+1 R o~
(A?’k e 1Py 4 H.c.)

n,k
Qj

2v+1
n,k jnk _ n,k
R e

and hence
.t n,k in,k 3
exp (—z 3 (Qj A]— + Hc)) = 1+ (1 — cos(

—1 sin(

Inserting this into (3.65) yields (3.62).

n,k
Qj

) (B es)
E) (A;L’k e"i% 4 H.c.) .

n,k
Qj 5

Especially, we have

iyl
et

oo

_ (cos (\9;10\ %) (lesMesl @ Ml cncll + le) (8] @ Mo andnl) — (3.66)

n=0

t .
— 4 sin (‘9?0’ 5) (lej) (5] @ [M)yse sl €777 + Hc)) for k=0

and

i Y1
iVt

= (cos (19571 ) (e © hccndid + 6551 © I+ Dyl + 1)

n=0
© ol n t —i(pj—m
— 7 sin (’Qj’1| 5) (|ej><gj| X |TL>OSC OSC(TZ + 1| e (pj—m/2) + HC))

+ ’gj><gjl ® ‘0>osc 0sc<0‘ fOI‘k—:—l
(3.67)
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Laser Pulses for Quantum Computation

An exterior electromagnetic field of the form® (plane-wave), (3.56) acting on the
j-th ion during the time interval

At =2¢/ ‘Q?k

is called a @-pulse for (n,k). Examples for the action exp(—% V}I At) of these
pulses are:

1. ¢-pulse for (0,0) with ¢; =1 :

alg;) ©|0)

osc

+ Blej) ®10),,. — (a cosp —ietV 3 Singo) lg;) @ 10)
+ (B cosp —ie ™ a singp) |e;) @ |0)

osc

0oSsCc

2. Z-pulse for (0,-1) with ¢; = 7 :

|g]> ® |O>osc — + |gj> ® |O>OSC )
|e]> ® |0>osc — _7/ |gj> ® ‘]‘>osc °
3. m-pulse for (0,-1) with ¢; =0

|8) ®[0)pge ) ®10)
87) ® [N — —lg) ® 1)

) ®[0)pe = —185) ® [0 »
l6j) ® 1) +lgj) @ 1)

OoSsc

e

I

Obviously, the action of a -pulse is that of a 1-qubit rotation, i.e. it is de-
scribed by the matrix

_ ot G
( cosp —ie eo) wrt {la) =10} le) =)}

—ie ™ singp cos

as long as n;, = 0. Moreover, suitable laser pulses for implementing the CNOT gate
as described in 3.3.1 are the following:

(3.17) : a g—pulse for (0, —1) with ¢; = & on ion j;

(3.18) :  a m-pulse for (0,—1) with ¢;, = 0 on ion j,,
tuned to a transition |gj,) ® |1). . = ‘e3~2> 10)sc
with |e;-2> sufficiently different from |e;,) ,

(3.19): a g—pulse for (0, —1) with ¢; = % on ion j; .
DRAFT, June 26, 2009

52Note that for electromagnetic radiation the electric field uniquely fixes the magnetic field and
vice versa.
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This shows that a sufficiently large class of quantum gates may be implemented,
provided that the oscillatory modes can be cooled to their ground state.

Exercise 16 Show the following:

a) The matrices €'91% and €'92% correspond to special 1-qubit rotations, for all
v €R.

b) e—i01] Gy etiont — G .
¢) Every U e SU(2) may be represented in the form?

A .,\ﬂ ,AQ .AQ
U=¢e%2¢'%"%2¢e"%22  p 0, 0€R.

3.3.4 Laser Cooling

See (Metcalf and van der Straten, 1999).

DRAFT, June 26, 2009

53Recall the beginning of the proof of Lemma 1.2.2.
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Chapter 4

General Aspects of Quantum
Information

An open system is mothing more than one which has interactions with
some other environment system, whose dynamics we wish to neglect, or
average over.

(Nielsen and Chuang, 2001, p. 353)

4.1 Introduction

Quantum information theory deals with transmission and quantification of quantum
information. Roughly speaking, quantum information is the information carried
by n-qubit systems (n € N). Of the utmost importance for quantum information —
as opposed to classical information,' — are:

1. The quantum mechanical superposition principle:

The pure states of a quantum system are in 1-1-correspondence with
the 1-dimensional subspaces of a complex HILBERT space (unless
there are superselection rules?).

2. The no-cloning theorem (Dicks, 1982; Wootters and Zurek, 1982; Peres, 2002):

There cannot exist any recipe for preparing any two or more systems
such that each of them carries the same quantum information as a
given quantum system — unless the state of the latter is completely
known, of course.

DRAFT, June 26, 2009

1See (Shannon, 1949) for the theory of classical information.
2See (Verstracte and Cirac, 2003; Bartlett and Wiseman, 2003) for the case with superselection
rules.

93
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Remark: There are several justifications for the no-cloning theorem,? e.g.:

e Given ¥\ € H, there is no linear extension of the mapping

C(T ® ¥) ' J @ T for all normalized ¥ € H

toall of H® H.

e Cloning would allow measurement of incommensurable quantum observables
— impossible according to quantum mechanics.

e Cloning would, by proper use of one of the available BELL sources, allow for
superluminal communication? — impossible according to special relativity.

While the superposition principle opens up the fascinating possibilities of quan-
tum computation, the impossibility of cloning unknown quantum states strongly
limits the amount of information that can be read out from quantum states.” Thus,
e.g., it is impossible to distinguish nonorthogonal states® by a single measurement.
Nevertheless, quantum information seems to offer a wealth of useful applications
without any classical equivalent.

We say that quantum information is transmitted — to whatever degree intact —
through a quantum (rather than classical) channel if the information is sent
using systems whose quantum character cannot be neglected in this respect. In
other words:

We identify quantum channels with open’ quantum systems, used
for quantum communication.

For practical communication it is important that information can be transferred
in a reversible way from one physical system to another. The no-cloning theorem
implies that unknown quantum information cannot be transferred from quantum
to purely classical systems in a reversible way. This is why quantum channels and
entanglement-assisted classical channels are the main topic of these lectures.

In the following, unless stated otherwise, we will always work in the interaction
picture and make extensive use of DIRAC’s bra-ket notation.® For simplicity, we
consider only finite-dimensional HILBERT spaces. This is sufficient for clarify-
ing the main points.

DRAFT, June 26, 2009

3See (Werner, 2001, Section 2.3) for a detailed discussion.

4See (Herbert, 1982). Similarly, joint measurability (without cloning) of non-commuting ob-
servables would enable superluminal communication.

50n the other hand, the non-cloning theorem constitutes the basis for secure quantum cryp-
tography (see http://www.idquantique.com) and quantum passwords (Gu and Weedbrook, 2005).

SWe tacitly identify states with their density matrices or wave functions (if pure).

"We have to consider open quantum systems since quantum information is prone to quantum
noise caused by interaction with the environment.

8See, e.g., (Liicke, eine).
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4.2 Quantum Channels

4.2.1 Open Quantum Systems and Quantum Operations

Let us consider two quantum systems S; resp. Sy with (finite dimensional) state
spaces H; resp. Hs and consider Sy as the environment of Sy ; i.e. let us assume the
bipartite System S composed of Sy and S to be closed. Moreover, let us assume
that S; is prepared in a pure state” p(V) € S(H;) at time 0. Then, at time 0 there
are no correlations between S; and Sy and the state of S is of the form

o= @ (4.1
with p® € S(H,). At time ¢, then (see, e.g., Section 6.1.2 of (Liicke, nlqo)), the
state of S is A )

=UpYW @ pA U, (4.2)
where the unitary operator U on the state space H; ® Hs of system § is given by

0 def ot Hoto—7 Ht

)

H resp. Hy, = ﬁél) ® ﬁéQ) being the actual resp. free Hamiltonian of §. The partial
state of &7 at time t, therefore, is

) =e(ph), (4.3)
where!?

¢(p) trace2<U (7 @ o )UT) Vi € S(H). (4.4)

Thanks to the spectral theorem, the initial state of the environment can be written

in the form
n9 na
=DM \¢,(@2)><¢>(§) D As=1 (4.5)
=137 =1
with some orthonormal basis {(ng), e %22)} of Hy. (4.4) and (4.5) imply"!

) = 30 w0 (0|0 ) (o

) O )

a,B=1
= Z Kopp Kl , Vp € S(Hy) (4.6)
a,B=1

DRAFT, June 26, 2009
9By S(H) we denote the set of all states, i.e. of all positive operators p on the HILBERT space

H with trace (p) = 1. L(H), as usual, denotes the set of all bounded linear operators on H .
ONote that € depends not only on H and H, but also on the initial state of the environment!
1We use the notation

(2] (35 2002 # 3 A0 (0| vt
k=1 k=1

for ¢(2),’(/J(2) € Ha, Al,...,AN € Hy, and Bl,...7BN € Hs.
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for every orthonormal basis {%2), . ,w%)} of Hy , where
Kag @ VA (010 |68) € L) Vo B {1, n)
and, therefore,

DR PR SPW

a,6=1 a ﬁ—

= Z)\ﬂ<¢(2)’UTU¢ﬁ >)

.

Ut o) (6

o})

:1
4.5)

If, from an ensemble in the state (4.2), those individuals are selected (by projective

O)u]

measurement of the environment) for which S, is in the partial state
then (4.6) has to be replaced by'?

=Y Kapi' Kl Vi €S(H)

and
trace (Qﬁ([))) <1

is the relative number of individuals selected. In either case &£ is just a special
quantum operation:'?

Definition 4.2.1 Let H and H' be HILBERT-spaces. Then by Q(H,H') we denote
the set of all mappings € from S(H) into L(H') of the form

N
=Y KipKf[ VpeS(H), (4.7)

k=1

with suitable N € N and K, € L(H,H') fulfilling**

N
Y KlK.<1. (4.8)
k=1
DRAFT, June 26, 2009
12For a corresponding representation of general linear maps see (Shabani and Lidar, 2006, The-
oreml).
13 See (Buscemi et al., 2003) for efficient realizations and (Werner, 2001, Section 2.6.2) for the
dual action of quantum operations on the observable algebras.
4Note that the adjoint KT of a linear mapping K € £(H,H) is characterized by

< / >H:<KW/ >H, VypeH, v eH .
Thus, e.g., (J') ()" = [v) (1]
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The elements of Q(H,H') are called quantum operations and the K, in (4.7) are
called KRAUS operators for €.

Remarks:

1. Note that'®

0 < trace (C(ﬁ)) <1 VpeS(H)

>0

2. Obviously, we also have
¢, € Q(Hi, Ha), € € Q(I:I%Hii) — 0C € Q(Hy, Hs).

3. But, given €; € Q(H;y,Hs) and €3 € Q(H1, Hs), this does not
guarantee existence of an €y € Q(Hso, H3) with €3 = &€y 0 ;.

4. Of course, nonexistence of such €, is only possible if €; is not in-
vertible. The latter is obviously the case if, e.g., H; = Hy and

]
>
]
>
>
A

< (ﬁ) =

Il
=)

N — |~
> <

<C

e

m

=2

=

5. The linear extension

N
CA)EN K AK] VAe L),
k=1

of € to all of L(H;) is completely positive,'° i.c.:

A>0 = (1€ (A)>0 VA ecC'®H,,neN.

DRAFT, June 26, 2009

15The possibility trace (@([})) <1 is included to allow for absorption.
——

>0
6 Every trace preserving affine mapping of S(H) into S(H) can be represented as (the restriction
of) a difference of two completely positive mappings (Kuah and Sudarshan, 2005).
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Lemma 4.2.2 Let H, and Hs be finite-dimensional HILBERT-spaces'” and let ¢
be a mapping from S(Hy) into L(Hz). Then € is a quantum operation, i.e. € €
Q(H1, Ha) , iff the following three conditions are fulfilled:

g trace <€(/§)> <1 VpeS(H).
2.

C(Aﬁl NGy ;32) —AC(H) + (1= N €(p) YA€ [0,1], pr,po € S(H).
3.

(1®é)(|\11>(\1/\> >0 VUeH ®H,,

where € denotes the unique linear extension'® of € to all of L(H).

Outline of proof: Assume that € fulfills the requirements 1-3. Choose an orthonor-

mal basis { 51), ey ,(111)} of H; and defining
o LS (p|a) o) veen (4.9)
v=1
we get

(v

o) = (e |v) Voer,vell,. ..,m}

and hence!?
<(l)wl) ,=. Z (o0 | w)(w] o) (|62 ) {oM])
v,u=1
-y <w*(¢9>><¢£}>\®@( ¢9>><¢£}>D) ")
v,u=1
= (@AWY VY eH, ¢ =1, (4.10)

DRAFT, June 26, 2009
17Since we agreed to consider only finite-dimensional HILBERT spaces, all operators on H;
resp. Ho are of trace class. For infinite-dimensional HILBERT spaces H1 = Ha see (Davies, 19706,
Theorem 2.3 and notes on page 147).
®Existence of this extension, is guaranteed by the second condition. For self-adjoint A it is

given by

C(A) % trace (4 i race (A L
T = o (AJF)€<(trace/1+))+t (A_)Q:((tracefl_)),

where /Lr resp. A_ denotes the positive resp. negative part of A :
A:A++A, iAiZO, A+A,:O.

Linear mappings from £(H;) into £(Hz) are also called superoperators.
19We use the notation explained in Footnote 11, with the roles of the tensor factors Hi, Ho
interchanged.



4.2. QUANTUM CHANNELS 99

where
I IR (EICH)
v,p=1
= (1@@) < ¢(1)>< 1)><¢£1)‘>
=[siL el sl Wi, o8 @elt) |20
and hence

0 < AeL(Hi®MHs).

3. req.

This, together with the spectral theorem implies

N
A= Z |0 ) (Pg| for suitable Uy, ..., Un € H1 @ Ha.
k=1

The latter, together with (4.10) gives

Sl wl) = 3 (W' 1w el [ Vo € My

k=1
Thus, defining the linear mappings?®

Kk¢ <¢H\I/k> V¢€H1,/€€{1,...,N}

from H; into Hso we get

z

C(lunwl) = - Kelodwl Kl Vo e, vl =1.

k=1
By condition 2 this gives (4.7). The latter together with condition 1, finally, gives?!
(4.8).
Conversely, conditions 1-3 are easily seen to be fulfilled for € € Q(H;, Ha) . |

Remark: At first glance one might consider conditions 1-3 of Lemma
4.2.2 as natural requirements on the action of quantum channels. Note,
however, that the output state of a quantum channel need not even be
determined by the input state in case of initial correlations with the

environment.>??

DRAFT, June 26, 2009
20Here, we use the notation

N’ N’
WS v e w§2>> LS (w]u) v
Jj=1 j=1

forw’wil),..., N,EHlandz/Jl e N,GHg o
2Violation of (4.8) would imply existence of a normalized eigenvector 1 of Z,ivzl K ,1 K, with

eigenvalue greater than 1 and thus trace (Q:(ﬁ)) >1 for p=|¢s) (Y],

22Recall Footnote 10. See also (Kuah and Sudarshan, 2005), in this connection.
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Definition 4.2.1 and Lemma 4.2.1 describe the most general quantum operations.
Simple versions are, among others:

1. Unitary transformations

given, e.g., by (4.4) for
U=VxV, V unitary .

2. Complete projective measurement operations

p— C(p Z P 1>p oD {¢§1), e ,gbflll)} orthonormal basis of H1 ,

given, e.g., by (4.4) if there are ,652), . ,pgi) € S(Hs) with pairwise orthogonal
supports and such that*

UPw @ P U =Pa@p? Vie{l,...,m}.
J J

Example:**

U = action of CNOT,
control qubit,
target qubit ,

pP = ()0l (or [1)(1]).

oo
I

3. Cascaded complete projective measurement operations

P €)= S Ko PRl
J1yeendr=1
where
f((jl,...,jr) =P Py Y0, €{1,...,m)
with IADM, e ,pkm being the projectors of the k-th projective measurement.

Remark: Note that

Z K]lx dr) (J'l ,,,,, gy =1

J1sedr=1

but that, in general, the IA((jhmyjr) are no longer projection operators.

DRAFT, June 26, 2009
23In this case nondemolition measurements on S; can be performed by corresponding (usually
destructive) measurements on Sy . Note, however, that for the resulting partial state of S; it does
not matter whether the state of the environment, including the measurement apparatus, is checked
or not (the possibility of postselection is sufficient).
24 Another example would be the STERN-GERLACH measurement if it really worked as usually
described.
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Theorem 4.2.3 Let 'H, and Hy be HILBERT-spaces and let f(l, cee

KN c E(Hl,Hg) . Then
N . . N . .
Y Kip(K)' =) K p(K)T Vpe S(H)
k=1 k=1

iff there is a unitary N X N-matriz (Ujk) with

N
=Y U)K, Vje{l,....N}.

k=1

101

Ky, K, ...,
(4.11)
(4.12)

Outline of proof: Assume that (4.11) holds. Then, if we choose an orthonormal

basis {41, ..., ¢} of Hy and define
b S 0 (Ke)
v=1
v S o6 (ko)
v=1
for ke {1,...,N}, we get

n

> (16

v, 1

ST = )]

~
Il
-

*
Il

<

3

M=

A1l

>
Il

1v,pu=1

W) (W -

Mz

b
Il
—

ul) @ (Ki |on) el ()

)

(I0)400l) ® (K5 16.)(0ul (RD)')

Therefore, by Corollary A.4.3, there is a unitary N x N-matrix (Ujk) with

N
U= UJV, Vkefl,...,
j=1

N},

i.e. with

n n N
Sove(Kio) =Y o, (ZUkijqsy) Vke{l,...,N}.
v=1 v=1

j=1

This implies

N
YUK ¢, Yve{l,...n}, ke{l,...,

Jj=1

Kk¢u =

and hence (4.12).
Conversely, it is obvious that (4.12) implies (4.11).

N}



102 CHAPTER 4. GENERAL ASPECTS OF QUANTUM INFORMATION

The standard example, in case n; > 1, for a mapping € of S(H;) into S(H;)
fulfilling conditions 1 and 2, but not 3, of Lemma 4.2.2 is the transposition?®
ni
~ Ay def i
Y]+ = 5, oY
=1

ni
p = Z ij

Ji:k=1 Jik

. (4.13)

depending on the basis {¢§”, e %11)} of H;.

Proof of positivity: Thanks to the spectral theorem it is sufficient to show that
Spure(H1) is left invariant under transposition. This, however follows from?*®

T(lonwl) =o'l Vower. g (4.14)

Disproof of complete positivity: Obviously, it is sufficient to check the case

ny1 = 2. Then, with

k) € oV welV Vi ke {12},

we have
@eD) = (10,0000 +1,1)(11))

* %(‘0’ {0, 1]+ |1’0><1,0|) (4.15)
- %(\1, 1)(0,0] + 10, 0)(1, 1|)

for the WERNER states?”

W L A e Ay (e ] Ae(o).

But for A > 1/3 (4.15) cannot be positive, since, e.g.

(D) (0.0 + 1)) = =2 (0 + 1)y

DRAFT, June 26, 2009
Z>Note that, for p’ € S(H;), transposition is equivalent to complex conjugation

P = 5 N — 3 () [Nl

J,k=1 k=1

Z6Recall (4.9).
2TThese states are distinguished by their invariance property

~ AN\ N AT . ~
(U ® U) W (U ® U) — Wy for all unitary U € £(H)
(Werner, 1989, Section IT). Note that the flip operator
10,0){0,0[ +[1,0)(0, 1] + [0, 1) (1,0 + |1, 1)(1, 1]

coincides with 1 ® 1 — 2 [U~)(¥~|.
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4.2.2 Quantum Noise and Error Correction

The action of noisy quantum channels corresponds to non-invertible quantum oper-
ations €. Nevertheless such an operation may be become invertible by restriction
to states with support on a suitable subspace C of H — and thus allow for error
correction on the code space C .

Theorem 4.2.4 Let ‘H be HILBERT space, € € Q(H,H) and let C be a linear
subspace of H . Then the following three statements are equivalent:

1. There are KRAUS operators Kl,...,KN for € and aq,...,an > 0 with
pcf(jkkpc:(s]kajpc VJ,]CE{L,N} (416)

2. There is a trace preserving quantum operation R with

(o) ([W)(wl) x W)@l Yo ec vl =1. (4.17)

3. There are KRAUS operators k{, e ,IA(]’V for € with
pcKJITK,;ﬁC:a]kpC \V/j,kE{l,,N} (418)

for some self-adjoint matriz (aj) .

Outline of proof: Assume the first statement to be true. Then, using the polar

decomposition
P Y A
K b = U \/P K"K, P
= Ya; U Ee (4.19)

(see, e.g., Lemma 7.3.20 of (Liicke, eine)) we have

O Pe = P UJ Un e (4.20)
and hence A A )
Py, c Po,c =ik Po,c- (4.21)
For
def a At Al oA T ~ ~
R(p) S (0] By, ) 0 (U] Bye) +PopPo Vpes(H), (1.22)
j=1
where N
P L= Py (4.23)
j=1
and thus N
POQ(PC/)PC)A = ZCLJPOU]PC[)AC AJTPO
(4.19) =
= 0 VpeS(H),
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this gives®®

N
Ro@)(l0)wl) = Z I Pe  Kilv)  (WIR Py U P (424)

N an U,
a4 19) Vak Uklv)

= ik ar U,
(4.21) jk ﬁ k‘w>

N
= > a; [P)W| Vyec.
(4.20)],:1
Since

N
A4 oA T /as o P A
UTP4> (UTP¢)+PTP - i,
;( Jj T u;C Jj T U;C 0 0(4.21)
this implies the second statement.?’ Now assume the second statement to be

true. Then (4.17) holds and, of course,*" trace (Q:(W)(M)) must be constant for

normalized 1 € C. Therefore,

(%OQ:) <Pcﬁpc> :'VPCPAPC Vpe S(H) (4.25)
holds for some v > 0. If f({, . ,f(}v are KRAUS operators for € and Rl, cee Ry are
KRAUS operators for 2R then (4.25) is equivalent to

N o
Ry K| PppPe K} Rl =~PepPe VpeSH).
Gok=1

Then,*" by Theorem 4.2.3, there are complex numbers A5 with
RjK,Po=XuuPe VYjke{l,... N}
and hence
Pe K] RIRy Kf Pe = Ny A Be Vi ke {1,... N} .
Since fR is trace preserving, this implies the third statement with
N
am =Y Nk Vkle{l,...,N}.
j=1

Finally, assume the third statement to be true. Then, by the spectral theorem,

there are a unitary matrix (u;;) and real numbers a1, ...,ay with
N
* .
E ulgaj upk = a; 05k Vi ke{l,...,N}.
i'k=1

DRAFT, June 26, 2009
*Note that Pe Ul Py o = Ul Py ¢

29Recall Remark 1 to Deﬁnltlon 4 2.1.
30Note that for p1, po € S(H) and A1, Ay € C we have

Mh st o,
p1 # P2

31'We may add N — 1 zeros as KRAUS operators to \ﬁf?c .
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This, together with (4.18), implies the first statement with
N

Kj=) uy K, Yje{l,...,N}. g
k=1

Remark: (4.19), (4.21), and (4.22) show how errors produced by € can
be corrected for the code C :

Perform a projective measurement w.r.t. the orthogonal sub-
spaces U C and apply U f according to the result of this ‘mea-
surement’

Corollary 4.2.5 Let C be a linear subspace of the HILBERT space H and let Kl, e
Ky resp. Kp .. K’ be KRAUS operators for € € Q(H, H) resp. ¢ € QH,H). If
(4.16) holds and zf the K are complex linear combinations of the K then, with R
as constructed in the pmof of Theorem 4.2.4, (4.17) holds also for € replaced by ¢ .

Outline of proof: Assume that

N
K=Y X\ Ki
k=1

and let R be defined as in the proof of Theorem 4.2.4. Then

(R0 @) (| ()
N
(4.24) Z (Pc U} PU]-C> M /ar Uy Pe [0) (¥ Ny, {/ar Pe U] (PC U} PU]-C)
’ Gk, lr=1
N
= . 2
(4.21) j%;l%wll W)Wl Yeec. g

4.3 Error Correcting Codes

4.3.1 General Apects

According to standard formulations (Liicke, 1996) the time evolution of closed®?
quantum mechanical systems is unitary.

Let us consider the closed system of one qubit together with its environment. A
unitary transformation of the corresponding state space maps separated pure states
to entangled pure states:

) = (al0y+811) @ |B)
— ) = a(10) @ |Eoo) + [1) @ [Bo}) + 8(10) @ | Ero) + (1) @ |Er))

DRAFT, June 26, 2009

32For open quantum systems see (Alicki, 2003) and references given there.

(4.26)
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(Va, 8 € C). This way the originally pure partial state®

(x| A 1x) = [af* 0] A]0) + (8 (1 A1) + 2R (a5 (0] A1) VA € Laa(C?)

may become a mixture:**

| Aol IX") = |oz|2 (0] A |0) 4+ |ﬁ|2 (1] A 1) if% (Ejx | Eum) = 6j10k00mo -
In other words:
The environment may cause decoherence.

Therefore, we have to be able to undo unwanted changes caused by the environment.

Now, for arbitrary vectors |E,) from the state space of the environment we have

3

S (6e10)) @ 1B = [0) @ (o) + [Bs)) + ) @ (1B} +i|B2))  (4.27)

r=0

and

i(&r |1>) ®|E,) =[0) ® <|E1> — |E2>> + ) ® (|E0> - |E3>> , (4.28)

r=0

where the 6, correspond to the PAULI matrices:*°

det (1 0 det (0 1 def 0 — def (1 0
=0 1) 7 o) 27 \w o) P \0 1)

(4.29)
Equations (4.26)—(4.28) imply
3
W)= (or(alo) + 811) ) @ |B,) (4.30)
r=0
if
[Eoo) = |Eo) + | E3) » | Eog) = [En) +i|Ey)
[Evo) = |Bv) —i|Ey) B = [Eo) — |Es)
ie. if
o) — | Eo0) J2r | E1.1) B = |[Eo,1) ‘QF | E1.0) ’
By — |E0,1>2—i|E1,0> B = [Eoo) ; |B11)

DRAFT, June 26, 2009
33We assume that |a|> + |3 =1 and (E | E) = 1.

34This is why open quantum quantum mechanical systems (Davies, 1976) do not evolve unitarily.
35Consider, e.g., the simple example |E) = |0) , |x/) = CNOT |x).

36Hence 69 = 1, 61 = >, 63 = Sy, 02 =161 05.
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(4.30) tells us that there are only three types of errors to be corrected, corresponding
to" 61,09,65. In this sense the set of possible errors for single-qubit systems is
discrete.

More generally, a unitary operation of the state space of an n-qubit system and
its environment acts according to®®

S owbielE) — 3w Y BBy, (431

be{0,1}" be{0,1}" b’e{0,1}"

where the |Ey ) are suitable state vectors of the environment depending on |E)
(and b,b’, of course), but not on the A\, . Now, from (4.27)/(4.28) we see that for
arbitrary states |Epp) of the environment there are vectors |E,) with

(e ) @IE) = > W)@ |Bw) Vbe {01},

r=0 b’e{0,1}

Straightforward induction shows that for arbitrary state vectors |Epy) there are
corresponding state vectors |Ey(b)) ;r € {0,...,3}"; with

S (&r|b>>®|Er(b)>: > W)@ |By) Ybe{0,1}"
re{0,1,2,3}" b’e{0,1}"

where
6. %6, ®...®6, Vreio,... 3},

Together with (4.31) this shows that every unitary action on an n-qubit system?
and its environment is of the form

S onwb)elE) — S N S (b)) @lBb) , ¥be{o,1)"

be{0,1}" be{0,1}"  re{0,1,2,3}"
Usually, in the theory of quantum error correction, only the case

|E.(b)) = |E;) Ybe{0,1}", re{0,1,23}"

DRAFT, June 26, 2009
37T0Of course, the &, are not the only set of operators serving this purpose:

3
A/ def / def * *
E Ups Os 5 |E}) § ups |Es) E :uTq Ugs = 0rs
=0

s=0

3 3

Zmb ® |E,) Z LB @B Ybe {01} .

38This is a simple consequence of linearity and the fact that the |b) form a basis of the n-qubit
state space.

39We assume that the qubits are not destroyed. For instance, if a qubit is identified with an
atom in a superposition of its ground state and its first excited state, then exciting a higher level
destroys this qubit.
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is considered.*® Then the error action is of the form

Ve E) — Y <&r\P>®|Er>, v (4.32)

re{0,1,2,3}" be{0,1}"

I
g
&
g

and error correction for such quantum mnoise should be possible along the lines
indicated below.

Remark: Alternatively, (4.32) may be written in the form

VO |E) — Y (Xa Z \I!) @ | Eap) | (4.33)
a,be{0,1}"
where: N
Xy = (Ooby + 016,01) @ ... ® (Oop,, + 015, 01) ,

def (4.34)

Zb (Ooby + 016,03) @ ... & (Ogp,, + 015, 03) -

To explain the essential idea of quantum error correction, let us assume that also
for multi-qubits systems only one-qubit errors corresponding to 63 (phase errors)
occur. In order to conserve an unknown one-qubit state (disentangled from the
environment) we first of all encode

U =«al0)+ G1)
for arbitrary «, § € C into the (pure) three-qubit state

U = alig) + Bin) ,

where
of 1 .
|100) def ﬁ(m, 0,0) +10,1,1) + [1,0,1) + |1, 1, 0>) (even parity)
) w1 | (4.35)
) & (1111 +11,0,0)+10,1,0) +10,0,1) - (0dd parity).

This may be done in the following way:

al0)+B11) S

|0) % H P a o) + B |wr)

%

DRAFT, June 26, 2009

40 For the general case see (Knill et al., 1999). The b-independence of the |E.(¥)) is easily
derived if every qubit interacts only with its own environment. Note, however, that the |E,) need
neither be orthogonal nor normalized nor unique!




4.3. ERROR CORRECTING CODES 109

Decoding is not more difficult:

D al0) + B[1)
awo) + Blwr) ¢ —4 (H|= )
—4 |0) .

N

>

If the state vector of the total system (three-qubit system plus environment) is
U@ ‘ E > then, according to our assumption, the interaction between both subsystems

can cause only transitions of the form

3
be|E) — Y (679 e

v=0

B
with suitable state vectors ’Eéy)> of the environment, where
¥b e {0,1}° .

2 (v) def ’bl,bQ,b3> ifr=20
78 ’b17b2’b3> B { (_1>bu ’b17627b3> else

The essential point is that the subspaces

def

H, 6 Lalio) + Blin) - 6,0 € C)

are pairwise orthogonal. Therefore, to restore the original encoded state vector
a |0y + B |1), it suffices to perform an optimal test (measurement of first kind ) to
which of the four subspaces H, this state vector belongs and apply &éy) according
to the outcome.

Exercise 17 Show that the (n + 1)-qubit network

Jah
WV

[aA)
>

&
N

transforms ()\0 10) + A\ |1>> ®10,...,0) into Ao |0,...,0) + Ay |1,...,1) and discuss
its possible use for error correction.
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4.3.2 Classical Codes

The general idea of classical error correction (Hamming, 1950; Pless, 1989) is the
following:

e Consider a channel transmitting n-bit words without changing more than m
bits of any word.

e Then the original words can be uniquely reconstructed from the received ones
if only special code words w = (wy,...,w,) € {0,1}" are sent which are
chosen such that the HAMMING distance

n
f
alw, W) >, (= w = W)
v=1

between any two code words w, w’ is > 2m.

Obviously, 2™ must be larger than the number of code words (the more the larger
m is) for error correction to work this way.*! Actually:

“Error-correcting coding is the art of adding redundancy efficiently so
that most messages, if distorted, can be correctly decoded.”
(Pless, 1989, p. 2)

Especially convenient are the [n, k] linear classical codes, for which a set C C {0,1}"
of 2% code words — the code — is selected by means of an (n — k) x n-matrix H

as/12

C:ker(ﬁl)dg{be{(),l}n: f[b:O}.

Of course, the n — k rows of the so-called parity check® matriz H have to be
independent in order to have

dim (ker(ﬁ)) =k.

Warning: The code C may contain transposed row vectors of the parity
check matrix H .

Without restriction of generality the parity check matrix can be assumed to be of
the form™

= (An,),
DRAFT, June 26, 2009
410f course this reduces the capacity of the communication channel.

. 42Here, we identify matrices with the corresponding linear maps. Note that the components of
H are in {0,1} and that all arithmetic is to be understood modulo 2. Hence, e.g., H = —H .

n
3Every row (h1,...,hy) gives rise to a parity check Z h, b, 20 on the substring of those bits
v=1
of b in places where the row has 1’s.
4 This is easily seen using GAUSSian elimination. Eventually the bits have to be relabeled.
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where A is some (n — k) x k-matrix. In this form we easily see that

HG =0

an
i (%)

C:{@a: ae{O,l}k}.

holds with the n x k-matrix

hence®?

Remark: A possible coding would be

{0,1}F > a — Ga e {0,1}".
word of message corresp. code word

While G may directly be used as a generator of the code, H is more convenient
for error detection:

Let E C {0,1}" be the set of possible ‘errors’ and let HAE be an
injection. Then the distortion

Wi W =w-+e

of a code word w € C by an error e € E can be identified by checking
the error syndrome R R

Hw =He
and corrected by adding (=subtracting) e.

Exercise 18 The rows of the r x (2" — 1) parity check matrix characterizing the
so-called binary HAMMING code Ham|r, 2| are the nonzero elements of {0,1}",
ordered* according to the value of the corresponding binary numbers.*’

a) Show for every r > 2 that Ham|r, 2] is suitable for correcting errors on single
bits.

b) Discuss Ham|2, 2] in detail.

Let C be a a [n, k] linear classical code. Then
Ct ¥ be{0,1}":b-b =0mod2Vb €C}

is called its dual code.

DRAFT, June 26, 2009

4>Note that, thanks to 1, the rows of G are all independent.
46 Actually, different orderings give rise to equivalent codes.
47See (4.53) for r = 3.
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Exercise 19 Let C be a [n, k| linear classical code with parity check matrix H and
generator GG . Show the following:*®

a) Cis a [n — k,n| linear classical code with parity check matrix H+ = GT and
generator G+ = HT.

b)
(¢ =c.

c)
Z (—1)P = Ic| ifbecCt,
0 ifbe{0,1}"\C*.

b’eC

4.3.3 Quantum Codes

In classical communication the received message may be inspected and corrected
according to the error syndrome. In quantum communication, however, we should
carefully avoid too detailed ‘measurement’ (associated with uncontrollable ‘collapse’)
of the state before reconstruction. Therefore, in order to be able to correct all errors
corresponding to error operations & € & we have to look for quantum codes® of the
following form:

e The n-qubit state space H containing the quantum code words is a direct sum
of specified subspaces H, .

e Every ¢ € € is of a definite type d, i.e. & |w) € Hy holds for all quantum
code words™ |w) .

e If 5,0 € € are of the same type d then ¢ |w) ~ &’ |w) holds for all quantum
code words |w) (but not necessarily for other state vectors).

Under these conditions — if only errors corresponding to operations ¢ € € are
superimposed®’ — quantum error correction is possible as indicated in 4.3.1:

e The ‘received’ state is forced — via corresponding ‘measurement’ — to ‘col-
lapse’ into a state described by an element of one of the subspaces Hy .

e Since the ‘collapsed’ state is just the sent code word distorted by an error of
type d we only have to apply the inverse of some unitary error operation of
type d to reconstruct the correct code word.
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48 As usual, we denote the number of elements of a finite set C by |C].

9By n-qubit quantum code we always mean the set of pairwise orthogonal n-qubit state
vectors used as quantum code words. Note, however, that many authors mean by quantum code
the complex linear span of quantum code words.

°0Tn 4.3.1 we already used linear superpositions |g), [11) of the computational base states as
quantum code words, in order to indicate additional possibilities in quantum coding.

510f course, € should include the trivial ‘error operation’ 6 = 1.
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Exercise 20

a) Show that for SHOR’s 9-qubit code words

o) = 292(10.0.0) + 110 ) @ (10,00 + 1112 ) & (00,0 +11.1.1))

i) = 22(j0.0.0) ~ 11 @ (10,00 - 11} ) @ (0.0.0) - 1.1,1)

every superposition of single-qubit errors, i.e. every distortion of the form
(ofisy+ s o181 — 3 (o) i) o .
reRo

3
Ro def U{permutations of (r,0,0,0,0,0,0,0, 0)} ;

r=0

o) + 35

may be corrected as described above.

b) Show that encoding ¥ = «|0) + (1) into « )ﬁjo> + 0 1AZ)1> may be achieved

as follows:

7 [H] )
0) —
0) ——D—
0) —& H |
0) db « ﬁ/o>+ﬁ 7:ZJ1>
0) ———D—
10) &—H]|
0) —b
0) ——D—

Recall that, according to (4.33), for every n € N the possible error n-qubit error
operations are elements of the PAULI group °*

s, {z”f(bl Ziy : v €10,...,3}, by, by € {0, 1}"} (4.36)

DRAFT, June 26, 2009

52The X}, and Zp, were defined by (4.34) and (4.29).
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That the latter is a group w.r.t. operator multiplication follows immediately from
the algebra of PAULI matrices:

~

6,6, = 1 Vv e {0,1,2,3}

&j&k = —&k&j Vj,k’G{l,Q,?)},j#k‘,

(3'1 &2 = ié’g, (437)
(3'26’3 - i&l,

0301 = 103.

The following statements also follow directly from these relations:

6,=6=06," Yve{0,1,2,3},
6n362déf {&h@"-@&rn : rl,...,rne{O,...,S}} is not a group,

P Xy, oy € 6) = i¥ =i"P vy e{0,1,2,3}, by,bs € {0,1}",
66' € {(+6'6, —6'6} V6,00 €6,.

Theorem 4.3.1 Let W C 'H be an n-qubit quantum code and let € C &,, be a set
of error operations including the trivial operation 1. Assume that the linear span

Hyy of W is stabilized by the subset Gy of G, , i.e. that
sz{@eH:gﬁlzﬁf ngGW}. (4.42)

MOT'QO’UG’I”, assume
576" ¢ N(GSw)\ Gy V5,6 €€, (4.43)

where N(Syy) denotes the normalizer of Gy :
NGw)={6€6,:6§6"=§ Y§eSy}.

Then there is a unique mapping ds from Gy into {+1,—1} such that:

i(60) = 4)(6%) VoeSw,se€, bery, (149
eHwC My, L {ben: gb=dy(9)0} voee, (4.45)
d&%d(}/ — HdUJ_Hd&/ V&,&’EQE, (446)
dy=dy = 66U =050 V56,6'cE UeHy (4.47)

Outline of proof: (4.44) is a direct consequence of (4.41) and (4.42). (4.44) directly

implies (4.45). Since®

G=§" VieGy (4.48)

DRAFT, June 26, 2009

53This is because for all & € &,, we have §2 = 1le=o6=056".
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— and since eigenvectors corresponding to different eigenvalues of a self-adjoint op-
erator are always orthogonal — (4.44) also implies (4.46). Finally, (4.44) and (4.41)
imply

§o =ds(9)6g Ve By, 6e€

and hence

(438)
Therefore (4.47) follows according to

d&:d[,/ - (6'*6'/

)
= 66 € N(Gy)
S GW

= 00

(4.43) -

— V=0 veHy
(4.42) R . .

= V=6 VYUEH
(4.38) w1

Remarks:

1. In view of (4.43), &)y should be chosen as large as possible.

2. The maximal G,y fulfilling the requirements of Theorem 4.3.1 for
given Hyy is an abelian group called the stabilizer of Hyy .

3. Quantum codes W fulfilling the requirements of Theorem 4.3.1 are
called stabilizer codes.

4. If there are 6, ¢’ € € and |w) € W with
Gy =6 [w) but &#8

then the code is called degenerate w.r.t. €.

5. SHOR’s 9-qubit code, described in Exercise 20, is degenerate w.r.t.
the set of single qubit error operations. This can be easily seen by
considering phase flip errors on different qubits.

6. A stabilizer code is nondegenerate w.r.t € iff
o#£0¢ = 576" ¢ Gy Vo,6' € €.

7. In classical coding there is no analog for degeneracy.
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Lemma 4.3.2 For j € {1,2}, let the C; be a [n,k;| linear classical codes with
Cy C Cy # Cq, and define

W:CSS(Cl,CQ) déf{| b : Z |b+b/ bECl} . (449)
V |CQ b’eCs
where H denotes the n-qubit state space. Then (4.42) holds for
GW:{XaZb:aECQ,bGCf}. (450)

Outline of proof: Let
= 3 /\b|b>e{\if€H:g\iJ:\if vgeew}.

be{0,1}"
Then
— cl > Zw > M |b)
(4.50) ’ b’eCi be{0,1}"™
1 S
= 3 e XU
be{0,1}" Flprect
E:19 Z )\b |b>
x b€C1
= Xb/ )\b |b
(450) G2 \bggz b;
= Z )\b |wb .
belCy

Since, obviously,
Xo Zyy Jip) = [p) VaeCy,b el ,bel

this proves the lemma. |

Remarks:
1. The quantum codes CSS(Cy, C2) described by Lemma 4.3.2 are called
CALDERBANK-SHOR-STEANE codes .

2. The number of code words for these codes is
[Ci]

— ghi—ke
A

|CSS (C1,Co)| =

Lemma 4.3.3 Let C;, W and Gy be given as in Lemma 4.5.2. If Ci as well as
Cy is suitable for correcting errors on up to t bits then

£ = 66 ¢ NG V5,6 €€ 4.51
7 ¢ N(Sw)

holds for
¢ = {X Zo,: €105 € {b e {0, 1" Y | < t}} . (4.52)
v=1



4.3. ERROR CORRECTING CODES 117

Outline of proof: Consider 6,6’ € € with 6 # 6. Then there are

ej7e’j S {b S {071}71 : Z|by| < t}
v=1

with®*
{er +e€'1, e3 +e€'5} # {0}
and .
5* 6 = (Xel Zes) Xer, Zery
= Zes Xel+e/1 Ze/s
= (_1)63'(&4_6 1) Xeri‘e’l Ze3+e'3
Hence
((3'* 6'/) Xa Zb ((3'* &/)* = Xel-‘re’l Ze3+e’3 Xa Zb AZAG3+9'3X91 +e’1

_ i(e3+e’3)-aib-(e1+e’1) Xa Zb VYab € {0, 1}" .
If e3 + €3 # 0 then (es + €’3) - a # 0 mod 2 and, consequently,

(6%6') Xa (67 6")" = —Xa

for some a € Cy since the generator of Cy is the parity check matrix of C3-. On the
other hand, if e; + €’; # 0 then b - (e; + €’1) # 0 mod 2 and, consequently,

(6%6") 2w (67 6")" = —2Zp

for some b € Ci-. Thus 6* 6" ¢ N (Syy). |

Remark: Obviously, CSS(Cy,Cs) is nondegenerate w.r.t. & specified by

Lemma 4.3.3.
In general, the number of operations® 6, affecting at most ¢ € {0,...,n} qubits
t
, n\ .
of an n-qubit system is Z < ) 37 . Therefore, in order to correct all corresponding
J

j=0
errors for a nondegenerate n-qubit code according to the scheme described above,
that many subspaces Hy are needed. Moreover, the dimension of each of these
subspaces must not be smaller than the number of code words. Therefore:

Correction of all errors on at most ¢t qubits of a nondegenerate n-
qubit code spanned by 2F orthogonal code words is not possible if the
quantum HAMMING bound

t
n .

> ( _>3J ok < on
Jj=0 J
is violated.

DRAFT, June 26, 2009
54Recall Footnote 42.
% Recall (4.32).
°6The index j = 0 corresponds to the trivial error operation (unit operator).
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Note that for £ =t = 1 the quantum HAMMING bound becomes 2+ 6n < 2" | hence
n>>5.

For further details on quantum codes see (Preskill, 01, Chapter 7), and (Schlingemann and Werner, 2(
Schlingemann, 2001; Keyl and Werner, 2002).

4.3.4 Reliable Quantum Computation

Let us discuss the implementation of error correction in more detail. For simplicity,
we consider only the quantum code CSS (Ham[?), 2], Ham(3, Q]L) , called the STEANE
code. According to Exercise 18 a parity check matrix for Ham|[3, 2] is

(4.53)

=

|
= O O
O = O
)
o O =
—_ O =

1
1
0

—_ = =

Exercise 21

a) Show that the code words corresponding to the parity check matrix H; are
the same as those corresponding to the parity check matrix

) 01 11100
HY{1 01 101 0
110100 1

b) Show that®’
1000011
~def 0O 1 0O 0O 1 0 1
B=109 010110
0001111

is a parity matrix for Ham|[3, 2]+ .
c¢) Show that
Hamf3, 2" = {be {0,1}": Hyb =0, (-1)"**7 =1}

According to Exercise 21, the quantum code words of the STEANE code are
1
lwe) = ﬁ<|0000000> + |1101001) + [1011010) + [0111100)
+10110011) 4 [1100110) + |1010101) + |0()01111)) ,
(4.54)

<+ [1111111) +]0010110) + |0100101) + |1000011)

E
|
SI-

+[1001100) + [0011001) + |0101010) + |1110000)) :

DRAFT, June 26, 2009
STRecall Exercise 19 a).
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Exercise 22 Show for (4.54) that the following network acts as indicated:

a0) + B[1) P
|0) ~{H S,
|0) ~1H
0 < H a|g) + [ i) -
0 JaR) N J\
|0) N NV, N
|0) D O—D
|0) O—D b— /

Exercise 23 Show that the following 10-qubit network acts as indicated:

|b1) |b1)
|b2) |b2)
|b3) |bs3)
|ba) |ba)
|bs) |b5)
|bs) |b6)
|b7) |b7)
0) S——D—
0) S—& S— } it3b) |
0) —& <> <> &5
where, e.g.,
e
def
N N
N NN
N N
€U N

The network of Exercise 23 may be used to reduce single-qubit errors of type &1
or/and &y to those of type q or/and 3 :
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An ideal test for the computational basis of the last 3 (ancillary) qubits
causes the 10-qubit state to collapse into some state being the direct
product of

e a (possibly only partially coherent) superposition of distortions of
the original code word by single-qubit errors, appearing in one and
the same position if of type 1 or 65, and

e a base state of the ancillary 3-qubit system which corresponds ei-
ther to (0,0,0), if the collapsed 7-qubit state is a distortion of the
original code word by single-qubit errors of only type ¢ or/and 73,
or else corresponds to the classical error syndrome of a bit-flip in
the position, where the code word is distorted by an error of type
g, or/and 75 .

If the collapsed state of the ancillary system does not correspond to
(0,0,0) then &; should be applied to the qubit in the position where the
code word is distorted. In any case, then, the resulting 7-qubit state will
be a (possibly only partially coherent) superposition of distortions of the
original code word by single-qubit errors of type 6o or/and &3 .

3

Exercise 24 Show that the following 10-qubit network flips the <Z e; 237 >—th
j=1

qubit for input of the specified type with |ej, es,e3) # |0,0,0) and, therefore, may

be used to avoid testing the error syndrome for single-qubit errors of type 1 or/and

(3'2 :

Vah)
N>

Vah)
>

Vah)
>

Vah)
V

Vah)
V

/ah)
N>

Vah)
>

le1) le1)

lea) :I le2)
les) — |es)

where

g
B
B

g
B
]



4.3. ERROR CORRECTING CODES 121

The eventually remaining single-qubit errors of only type 6y or/and 3. may be
converted into errors of type 6o or/and &, by applying Ug" . Correction these errors
as just described and applying U{" once more restores the original message.

Up to now we tacitly assumed that all devices used for error correction work
perfectly error free. Of course this is unrealistic and, actually, special care has to be
taken to prevent these devices from making things worse.

For instance, if a phase error appears for the first ancillary qubit of the error
syndrome network presented in Exercise 23 then according to Exercise this error
may propagate into all of the last four data qubits. To prevent this one could use

0) & O—P—D
|0) S
|0) SV
|0) S
instead of
0) —D—b—D—b
and implement in a suitable way.?®

While such precautions prohibit propagation of errors of the ancillary part of
the network into the data part they do not guarantee a correct error syndrome.
Therefore the ‘measurement’ of the error syndrome should be repeated and only
used for error correction if confirmed.

In order to protect calculations against quantum noise they should be performed
directly on the encoded data.

Of course, the encoded data should be error checked sufficiently often. Especially,
the actual computation should not be started before the initial encoded state has
been checked to be free of errors.

DRAFT, June 26, 2009
%See (Mottonen and Vartiainen, 2005, Fig. 8), in this connection.
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Altogether it seems possible to implement reliable quantum computation, if
sufficient care is taken. For further details see (Preskill, 1998b; Preskill, 1998a;
Leung, 2000).

4.4 Entanglement Assisted Channels

“Entanglement is monogamous — the more entangled Bob is with Alice, the less
entangled he can be with anyone else.”
Charles Bennett®°

4.4.1 Quantum Dense Coding’!
Let S = S; @ S, be a bipartite® 2-qubit system with state space H ® H and

computational basis {|y, 1) def by ® @, o Then the so-called BELL states
v,ue{0,1
+ def 1
_def 1
w1 (4.55)
vt = E(|071>+|170>) )
gt 1

S

form an orthonormal basis of H ® H and may be locally transformed into each
other:% .
ORBINE (&3®1)<I)i,
UF = (63@1)T*, (4.56)
Ut = (6 ®1) T,

Obviously, 2 classical bits of information may be encoded via the BELL states, e.g.:

0,002, (0,1)=d, (1,00=¥", (L,1)=d".

DRAFT, June 26, 2009
% See Section 1.2.2 for the network models of dense coding, teleportation, and entanglement
swapping. See also (Devetak and Winter, 2003; Devetak et al., 2004) for related protocols.
®Onhttp://qpip-server.tcs.tifr.res.in/ qpip/HTML/Courses/Bennett/TIFR2.pdf
61See also (Mermin, 2002).
62See Appendix A.4.3.
63 As usual, we denote by 61, ...,63 the PAULI operators, i.e. w.r.t. (|0),[1)) :

. (0 1 (0 —i (1 0
91={10) 2=\ o) 7 \o0 -1/
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Thus, if Alice and Bob (situated arbitrarily far apart) initially share a pair of qubits
forming S; @ S, in a BELL state,% say W_, then Alice may communicate 2 bits of
information by sending Bob her single qubit (system S;) after acting on it in an
appropriate way:

2-bit information | operation by Alice | new BELL state
(0,0) 0103 ot
(0,1) 030103 O
(1,0) 03 vt
(1,1) none v-

After receiving Alice’s qubit Bob just has to perform a projective measurement
w.r.t. the BELL basis® {®T &~ ¥+ ¥~} in order to decode the 2-bit information.

Needless to say, without entanglement Alice would not have any chance to trans-
mit more than a single bit by sending just a single qubit. Therefore, the described
procedure to communicate 2 bits by sending just 1 qubit is called quantum dense
coding (of classical information). Of course, the crucial point is that Alice has to
be given one partner of an entangled pair of qubits first. Note, however, that Alice
and Bob may store their qubits for some time in suitable quantum memory® before
starting to communicate. Then the information carried by the sent qubit is of no
use for any potential eavesdropper.

4.4.2 Quantum Teleportation
Consider, e.g., a 3-qubit system § = &1 & S, B S3 with state space H ® H ® ‘H and

computational basis {|a, B,7) e ® b5 R ¢, in the initial state®”
a,B,7€{0,1}
1
@0:¢®E(¢0®¢1—¢1®¢0) : (4.57)

In order to determine the effect of a projective measurement on the subsystem S;BS,
w.r.t. its BELL basis we rewrite this state in the form

Vg =0T 2y + P 1 +V @ xo+ ¥ ®xs. (4.58)

Writing
¢ =al0)+4]1)
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64For the creation of photon pairs in BELL states via parametric down conversion see, e.g.,
(Gatti et al., 2003) and references given there.

65For the implementation of such measurements see, e.g., (Paris et al., 2000; Tomita, 2000;
Kim et al., 2001).

66For the possibility of storing optical qubits see (Gingrich et al., 2003).

67Obviously, then, the subsystem Sy @ Ss is in the BELL state corresponding to ¥~ .
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and comparing

\/§¢®%(¢0®¢1—¢1®¢0)
= «l0,0,1) —«|0,1,0) — #]1,1,0) + 1,0, 1)

with
V20t @x0+ P @1+ T @ x2 + U @ s
1
= S(0.0@x0+ L) ©x0+10,0)@x L1 &

+10,1) @2 +[1,0) @ x2 +10,1) @ x5 — [1,0) @ xs

+ + — _
= 10,0 @XM o 1)@ X2 TN 411, ) o X2 X0y ) 20N
we get
Xo+x1 = +all),
X2+ X3 = —a|0>,
X2—xs = +4[1),
Xo—Xx1 = —0|0)
and hence
Xo = «ll)—=73]0),
= 01037
x1 = «all)+/3]0),
= (3'¢
1 (4.59)
X2 = Bl1)—«al0),
= —b3¥
X3 = —al0)—g]1),
= —9.

(4.57)—(4.59) show the possibility of quantum teleportation (of quantum infor-
.68

mation):
If Alice and Bob (situated arbitrarily far apart) initially share a pair of
qubits forming S, & Sz in the BELL state \% (o ® d1 — 1 ® @) then
Alice may communicate to Bob the quantum information contained in
the unknown state v in the following way:

Alice performs a projective measurement on &; @ Sy w.r.t. the BELL
basis {®T, &~ U ¥~} and tells Bob her result via classical commu-
nication. Bob just has to perform one of the operations 6163, 71, 03
or none — according to the outcome of Alice’s measurement — on his

DRAFT, June 26, 2009

68See (Sanctuary et al., 2003) for critical remarks on corresponding experiments.



4.4. ENTANGLEMENT ASSISTED CHANNELS 125

qubit (system Ss) in order to have the latter in the state £ :

result of Alice’s measurement | Bob’s operation
o+ G361 = (6103) "
o~ 61 =(61)7"
ot b3 = (63)7"
- none

Note that the classical information sent by Alice would be of no use to an eaves-
dropper and that sending classical information avoids the decoherence problems
connected with sending qubits.

4.4.3 Entanglement Swapping
Consider a 4-qubit system S = Sy & S; B Sz @ S5 in the initial state
Uy=U" @0V . (4.60)

Then the calculations of Section 4.4.2 show that

N = N = pof —

R A 1
by = (1®1®1®&1&3)§(|o>®q>+®|1> 1)@ ot @ 0)
(oigics) (j)ee el -[1)ee o))
(4.61)
—(iei®ieds) =(|0)@ ¥ 1) - 1) xp+®yo)

/N N/

0) U™ @ |1) —[1) @ ¥~ ®10)

Now assume that
Victor has access to &g,

Alice  has accessto S;1 B Ss,
Bob has access to  Ss.

Then — even though Victor, Alice, and Bob may be arbitrarily far apart, the en-
tanglement of the subsystem &y & S; may be swapped to the subsystem Sy @ &3 in
the following way:

Alice performs a projective measurement on S; &Sy w.r.t. the BELL basis
{®F,d~, U U~} and tells Bob her result via classical communication.
Bob just has to perform one of the operations 6,63, &1, d3 or none —
according to the outcome of Alice’s measurement — on his qubit (system
S3) in order to have the partial state of the subsystem Sy @ Ss in the
state U~
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Thus Alice may act as an entanglement provider:

Alice prepares pairs of entangled qubits and distributes one partner of
each pair to various customers including Victor and Bob. If Victor and
Bob need to share an entangled pair they instruct Alice to perform a pro-
jective measurement on §; @ Sy w.r.t. the BELL basis {®T, &~ ¥+ ¥~}
and communicate the result to either Victor and Bob who then knows
the type of entanglement of the pair shared with Bob.

4.4.4 Quantum Cryptography®

As explained in 2.2.1 the security of the RSA encryption scheme relies on the extreme
difficulty to factorize large numbers n by classical means (and the possibility of
authentication of submitted messages). Otherwise d could be determined from n
and e. However, in view of SHOR’s quantum factoring algorithm (Shor, 1991) and
the possible implementation of quantum computers such classical cryptosystems as
RSA may become insecure. Fortunately, quantum mechanics itself offers means for
secure communication exploiting the VERNAM cipher™ (also called one time pad):

Exploiting quantum mechanisms, Victor and Bob agree on a purely ran-
dom secret key ¢ = (c1,...,¢,) € {0,1}". Then, instead of sending Bob
the pure the plaintext message ¢ = (c1,...,¢,) € {0,1}" Victor sends
him the encoded message™

e = (bl@cl,...,bn@cn)
(through some public channel) which Bob may decrypt as
b: (61@01,...,671@0”)

but appears purely random to all eventual eavesdroppers.

As shown by Claude Shannon (Shannon, 1949a), this cryptosystem is
absolutely secure if e is kept secret and used only once.

If Victor and Bob share enough (nearly) maximally entangled pairs of qubits™ they
may establish a secret key in the following way:

DRAFT, June 26, 2009
69See (Bowmeester et al., 2000, Chapter 2) for a nice introduction and (Elliott et al., 2005) for
actual implementation. A commercial quantum cryptosystem is offered at: www.idquantique.com
"Developed by Gilbert Vernam at AT&T in 1917 (first published in 1926).
"INote that

b v b4y mod2 Vb, b e {0,1} .

72If the entanglement is not good enough even if it is fairly bad they may perform entanglement
distillation resulting in a smaller number of nearly perfectly entangled pairs; see Section 6.2.3.
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Via public communication they agree on an orthonormal basis (e, e;, €3)
of R and on a series of joint measurements of the following type on
definite pairs:

For every tested pair the momenta of the partners are directed
parallel or antiparallel e; and a check for linear polarization is
performed, but Victor and Bob independently and randomly
between two possibilities: Either they test whether the linear
polarization of their photon is parallel or orthogonal to e; or
check whether the linear polarization is parallel or orthogonal

to €y = L (e1 +e3)
V2
As long as their choices are different their results for the corresponding
pairs are completely uncorrelated. Whenever they choose the same type
of measurement their results are (nearly) perfectly correlated. Thus
they may agree via public communication on a random secret key in the
following way:

e Alice and Bob identify those pairs for which, by chance,
they had chosen the same type of measurement and dis-
card those pairs of which at least one barter got lost and
thus did not provide a definite result.

e The remaining pairs are split into two groups.

e Bob and Alice (publicly) compare their results for the first
group in order to check perfect correlation.

e If the correlations turn out to be (nearly) perfect for the
first group then Alice and Bob agree to use their results on
the second group for a common key. Thank to the corre-
lations they need not communicate the results concerning
the second group. Therefore a possible eavesdropper has
no access to the chosen key.

e Weak deviations from perfect correlation may be error
corrected after communicating results of various parity
checks™ — of almost no use for any eavesdropper.

This cryptosystem can only be attacked by manipulating the entangled pairs before
Victor’s and Bob’s measurements. But such attack will be detected by Victor and
Bob, who can eventually discard the current key and create another one.

DRAFT, June 26, 2009

73 Alternatively, if the correlations are only marginally spoiled, one could apply standard classical
error correction. to the appropriately encoded (and slightly disturbed) plaintext after use of the
one time pad.
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Chapter 5

Quantifying Quantum Information

In fact, the mathematical machinery we need to develop quantum infor-
mation theory is very similar to SHANNON's mathematics (typical se-
quences, random coding, ...); so similar as to sometimes obscure that
the conceptual context is really quite different.

(Preskill, 01, Section 5.2)

5.1 SHANNON Theory for Pedestrians

For simplicity, let us consider an information source (Z, p) of the following type:
1. Letters x are randomly drawn from a finite alphabet Z = {z,... 2x}.

2. The probability for drawing the n-letter word w = (z;,,. .., z;,) is'

n

p(zjm""zjn) - Hp(zju) VZjl""7Zjn €z,

v=1
where
p(z) = probability for drawing z Vz € Z.

Consistency, of course requires

p(z1)+...+plen)=1. (5.1)
Then, for the corresponding SHANNON entropy

H(Zp) = p(z) logs (p(z)) (5:2)

one may prove’

DRAFT, June 26, 2009
I'Thus we assume that the probabilities for the successively drawn letters are independent.
2See (Shannon, 1949, Appendix 3).

129



130 CHAPTER 5. QUANTIFYING QUANTUM INFORMATION

SHANNON ’s noiseless coding theorem:

For arbitrarly given § > 0, we may associate with every n € N a set W,
of typical n-letter words® such that:

1.
[W.| < 2MHEDT) vy e N,

2. The probability for a drawing a n-letter word w ¢ W, tends to 0
for n — .

In other words:

Asymptotically, the relevant words can be indexed by [n (H(Z,p) + 9)]
bits,* for every fixed § > 0.

In this sense, the information gained by drawing the letter z is — log, p(z)) bits.
The average information gained by drawing a letter, correspondingly, is H(Z, p) bits.

Remarks:
1. As to be expected, we have:

H(Z,p)=0 <= 3Jz€Z:p(z)=1. (5.3)

2. Straightforward calculation shows that®

Z=70UZy, Z1#V0=7210N7Zy# Zy

— H(Z.p) = H({Z1, %2} ) + B(Z0) H(Z1,p1) + P(Z) H(Za,p2),

(5.4)
where
p(Z) = > pl2)
€7, Vjie{l,2}.
pi(z) € p2)/p(Z;) VzeZ

DRAFT, June 26, 2009

3The typical words have to include essentially all those containing the letter = approximately
[np(z)]-times for every z € Z. For large n the number of such words is of the order

n!

IL (np(z))'

~ 2nH(Z,P) <Since N! I~ €7N NN for 1arge N> .

STIRLING

4Obviously, such coding can be used for data compression, if H(Z,p) < log,(|Z]) .
5(5.4) together with (5.5) and continuity in the p(z) fixes H uniquely (Shannon, 1949, Theorem
2).
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3. H(Z,p) as a functional of p is maximal® for constant p, i.e. for

p(z1) =...=p(zn) =1/N.
4.
1
)= ViEZ = H(Zp)= log2<|Z|> . (5.5)
5. Since

10g2<|Z|> — N if |Z] =2V,

compression is not possible for constant p(z) (essentially all words
are typical).

Now assume

Z=XxY
and define
() dof Zp(x,y) Ve X, (5.6)
p(y) = D play) Vyey, (5.7)
pi(zly) def {zl?ﬁ}?ﬁ/pz(y) ieflsf(y) > () V(2,y) € Z, (5.8)
plyl) 4 {HENE BP0 e ez. )

Remark: A possible application is the following:

X = {elements drawn and sent via some channel} |

Y = {elements received through that channel} ,

p(xz,y) = joint probability for sending = and receiving y,

pi(z) = probability for sending x,

p2(y) = probability for receiving v,

pa(ylz) = probability for receiving y when x is sent,

pi(x|y) = probability for 2 having been sent when y is received .

Then, thanks to’

a#b = a(lna—Inb) >a—b VYa,b>0 (5.10)

DRAFT, June 26, 2009
6The simplest way to check this this is by means of a LAGRANGE multiplier A : Determine A € R
and p(z1),...,p(zn) > 0 (not a priori postulating (5.1)) for which H(Z,p) + A (1 — X, ., p(2))
is maximal.
"Setting x = b/a, (5.10) follows from: 0 <z #1=Inz <z — 1.
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we have®
H(X xY,p) <H(X,p1)+ H(Y,p2) (subadditivity) (5.11)

and
H(X X Y7p) = H<X7pl) + H<Yap2)

(5.12)
— p(z,y) =pi(z)pa(y) YV(z,y) € X XY

Outline of proof: Replacing b by bc in (5.10) and using

In(z)
n(2)

logy(x) = Vo >0,

J—

we get

—-b
a#bc = a (10g2(a) — log,(b) — logz(c)) > aln(2)c YVa,b,c>0

and hence

H(X,p1)+ H(Y,p2) — H(X xY,p)

- -y (Z p(x,y)) logy (p1(2)) = - <Z p(x,y)> log, (p2(y))

zeX \yeY yeY \zeX
+ Y pay) logg(p(%y))
(z,y)EX XY
= > play) (logg (p(w,y)) — log, (pl(w)) — log, (pz(y))>
(z,y)EX XY
> Y (rey) -n@rw)/me)
(z,y)EX XY
> 0

with equality iff
p(x,y) —pi(x)p2(y) V(z,y) e X XY. g

Moreover, according to SHANNON’s noiseless coding theorem, the conditional en-
tropy’
def
H(XY) 3 poly) H (X i) (5.13)
yey

is the average asymptotic amount of bits of information needed in addition per Y-
part of the drawn z € Z | if only these parts are known, in order to determine also
the X-parts. Accordingly, we have

H(X xY,p) = H(Y,ps) + H(X|Y). (5.14)

DRAFT, June 26, 2009
8This corresponds to the fact that correlations between X and Y contain additional information.
Its quantum analogue can be negative (Horodecki et al., 2005).
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Outline of proof:
H(X]Y)

(5?3) _ZPQ(y)Zpl(x‘y) logz( p1(xly) )

vey vex =p(z,y)/p2(y)

- (m%:ezpz(%) p1(zly) log, (p(fc,y)) + g;pz(y) m;(pl(:cly) log, (pz(y)) 1
=p(z,y) T

Similarly we have
H(X x Y,p) = H(X,p1) + H(Y|X)

for

Hy(YIX) S i) H(Y, pa( 1))

zeX

Thanks to subadditivity (5.11), the mutual information

I(X:Y) S H(X,pr)+ H(Y,p2) — H(X x Y, p) (5.15)
is non-negative, as required by its interpretation as amount of information contained
in the correlations between X and Y . Its relation to the conditional entropy is given

by

I(X:Y) = H(X,p)— Hi(X]Y)
= H(Y,p,) — Hy(Y|X) (5.16)
> 0.

5.2 Adaption to Quantum Communication

5.2.1 VoN NEUMANN Entropy"

The VON NEUMANN entropy !

S1(p) ' _trace (plogyp) VpeSH) (5.17)

(von Neumann, 1927) can be considered as a generalization of the SHANNON entropy
in the following sense:
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108ee also (Wehrl, 1978; Ohya and Petz, 1993; Petz, 2001; Ruskai, 2002).
1One can easily prove that, at least for the (normalized) statistical operator p of the micro-
canonical or canonical ensemble, k In(2)S;(p) is the usual thermodynamic entropy; see, e.g.,
(Gardiner and Zoller, 2000, Section 2.4.1). Note, however, that the VON NEUMANN entropy —
contrary to the thermodynamic entropy — is non-extensive (not additive) for homogeneous non-
equilibrium systems. For generalizations of the VON NEUMANN entropy as a measure of ‘mixedness’

2

see (Berry and Sanders, 2003) and references given there.
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It
. " |1 fora=3,
P=3 2 e 0al60 = {0 e
then )
S1(p) = H(X, p) (5.18)
holds for o
L Llon @il 6a) (0l } (5.19)
p1(1¢y><¢uw) YN Vee{l...n}. (5.20)

Warning: If {¢1,...,¢,} is not an orthonormal system then (5.19) and (5.20) do
not imply (5.18) in general!
Theorem 5.2.1 (KLEIN's inequality'?) For all A, B € L(H) we have
0<A#B>0, ker(B)C ker(A)
—> trace (A <1n121 —In B)) > trace (A — B).

Outline of proof: Thanks to the spectral theorem there are orthonormal systems

{¢1,.... ¢} and {¢},..., 4.} of H with

A:Zjl\au/\mm , B= Zl b, |

>0 >0

for suitable ay,...,b, . Then

trace A lnA Z a, Ina,

and
trace (A In B) = Z<¢a Zaa\m qwzmb |6+ <z>fy|¢a>
a=1 y=1
= Z Qo ln ¢a | QS >|
a,y=1
hence

n

trace (A In A) — trace (A In B) Z (hqal, Zln (¢ | &) )

DRAFT, June 26, 2009

12Gee (Klein, 1931).
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Since, for x > 0, In(z) is a strictly concave function,'? the latter implies

trace (A In A) — trace (A In B)

<lnaa . m(i by (¢ | ¢;>}2>>

S
-3k

= trace (A - B).

M:

Q
Il
N

HM: ﬁvm:

(5.21)

(5.22)

(5.23)

In (5.22) equality holds only if, for every a € {1,...,n}, at most one of products
aaby |<¢a | ¢/w>| is different from zero. Then, with suitable relabelling of the gb’7 , we
n

have va |<¢a | ¢;>|2 = b, and equality in (5.23) holds only if a, = b, for all

y=1
aE{l,...,n},i.e.if/X:B. |

Remark: As an immediate consequence of Theorem 5.2.1 we have strict

positivity of the quantum relative entropy

S(pl7) < trace (4 (lnp—n )

for all states p, p’ € S(H) with ker(p') C ker(p) and p # p'.

Corollary 5.2.2 Let Hy, Hy be HILBERT spaces and p € S(H; ® Ha) .

S1(p) <S5 <trace 2(p )) + 51 (trace 1(,0)) (subadditivity)

and

Si(p) =S (trace 2(p )) + 51 (tracel(p)) <= p = tracey(p) @ trace1(p).

Outline of proof: Application of KLEIN’s inequality to

A=jp, B=traces(p)® trace(p)

gives

o
I

trace (A

< —=S1(p) — trace (A log, B)

DRAFT, June 26, 2009
13Strictly concave functions f of 2 > 0 are those fulfilling

Af(xn) + (1= A) flas) < f()\xl (- )\)x2> YA€ (0,1), z1,a2 > 0.

Then

135
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with equality only for p = trace2(p) ® trace1(p). Since
trace (A log B)
= trace <A (log2 (trace2(p)) ® 1+1®]log, (trace 1(/6))))

= trace (trace 2(p) log, (trace 5 (ﬁ))) + trace (trace 1(p) log, (trace | ([))))

= -5 (trace g(ﬁ)) - 51 (trace 1(%3)) )

this proves the corollary. g

The VON NEUMANN entropy of a state p increases if the latter is changed by a
complete projective measurement operation (ignoring the results):

Corollary 5.2.3 Let H be a HILBERT space, py € S(H), {Pl,...,f%} a set of
pairwise orthogonal projection operators on H with
P+..+P=1
and define
l
Ay def -
fo = Zpk po B .
k=1
Then
po# o = Si(po) < Si(py)-

Proof: Since

I
trace (p logs p) = trace (Z b, P p log, [)/)

k=1
1
= trace i p Py 10g2(ﬁ')>
[p",Pr]-=0 =1
= 751 (ﬁ/) )
The statement follows from KLEIN’s inequality (Theorem 5.2.1) applied to A =

p.B=p. g

Warning: In general, trace preserving quantum operations may de-
crease the VON NEUMANN entropy.'*

DRAFT, June 26, 2009

ME.g., if
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5.2.2 Accessible Information

Assume that the ‘alphabet’ X = {p1,...,pn, } is a set of (pairwise different) states
on H . Then, by “drawing the ‘letter’ p from X” we mean the random choice of an
individual from an ensemble in the state p. Again, for simplicity, we assume that
for every letter p its probability p;(p) for being drawn is given, positive, and does
not depend on which letters have been drawn before.

The best one can do, in order to acquire information about a drawn letter, is

t15

perform a POV measurement ™ corresponding to some set Y = {El, cey ENQ} of

events E represented by positive bounded operators on H with'®

Ei4.. 4+ Ey=1.
According to quantum mechanical rules, the probability for E is trace (p E), if p
was drawn. Hence, the probability for p being drawn and E being detected is'”

~ 7y def ~ P
p(p, E) = pi(p) trace (p E). (5.24)

If the letter drawn is unknown, the probability for E is
Ny
5.7 jzl !
= trace (po E),
where

N1
~ def A\ A
Po = Zpl(ﬂj)ﬂj
j=1

is the state of the source providing the letters. Of course,'® py does not uniquely
determine (X, p;). Nevertheless, the vVON NEUMANN entropy fulfills the HOLEVO
bound

I(X:Y) < Si(po) = Y pi(py) S1(py) (5.25)

DRAFT, June 26, 2009
are the KRAUS operator of the quantum operation & acting on a qubit system we have (’:(i /2) =
|0)(0| and hence

Si(i/2) > (@(1/2)) —0.

15f the elements of X are linearly independent, then the best result can be achieved by projective
measurement, i.e. with By, ..., EN2 being projection operators (Eldar, 2003). For the importance
of considering also linearly dependent E,’s see, e.g., (Kaszlikowski et al., 2003).

16Recall Corollary A.4.3, in this connection.

17Obviously, (5.24) is consistent with (5.6).

8Recall Corollary A.4.3.
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(Nielsen and Chuang, 2001, Theorem 12.1) and the condition

EIjl,jQ - {1, e 7N1} . trace (ﬁjl ﬁjz) 7£ O, jl 7é jg

= Si(po) < H<X’p1)+zlp1(ﬁj) S1(p;) (5.26)

Jj=1

(Nielsen and Chuang, 2001, Theorem 11.10). A direct consequence of (5.25) and
(5.26) is the upper bound

J51,72 € {1,..., N1} : trace (/3]»1 /3]-2) 20, j1 # jo

(5.27)
— A(X,p) < H(X,p1)
on the accessible information
AX,p) ¥ max I(X:Y). (5.28)

YZPOV
Hence:

It is impossible to get full information on the letters actually drawn
unless®”
pEP = pi=0 VppieXx.

Remark: Note that, for arbitrary p, o’ € S(H) we have®

trace (pp') =0

pp =0 =
<~ pHLJH.

On the other hand, (5.27) (together with continuity of the entropies) implies the
bound
A(X,p) < Si(po) - (5.29)
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90therwise, distinguishability of arbitrary states could be used for superluminal communication.
20Here, positivity of the operators p, o is essential! For A=At e L(H) the range AH of A is

also called the support of A, since

AV £0 = 04T e AH

for such A .
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5.2.3 Distance Measures for Quantum States”!

122

A natural distance measure for quantum states p, o’ of a finite-dimensional®® quan-
tum system is the trace distance®
ooy def 1o
D(p,p) = 5 lp=7l (5.30)
where ||.||; denotes the trace norm
1A, % trace ( 3 ATA) (5.31)
for trace class operators A on a HILBERT space H . Especially for qubits we have
N . v .
p=gqtp 7). P=5(1+p7)
and hence**

D(IaHa/) - itrace {/(p»f-_p/f.)Q

1 =
= trace <|p—p’| W)
1 /
le.

For qubit states p, p/ the trace distance is half the EuCLIDean distance
of the corresponding BLOCH vectors p, p’.

For general mixed states we have the following:

Lemma 5.2.4 Let H be a finite-dimensional HILBERT space and p,p' € S(H).
Then*

D(p,p') = max (traee (P p) — trace (P ﬁ’)) : (5.32)
pep

where P denotes the set of all projection operators on H .

DRAFT, June 26, 2009

2See also (Gilchrist et al., 2005).
22For infinite-dimensional systems, however, the trace distance is not physically adequate
(Streater, 2003).

23Note that

ﬁzzpu‘@u><¢u‘ ) 1 &
o = D) =5 > lpy — )|
p = Zp,u |, ) (D | v=1

v=1

if {®,},cy is @ MONS of H.

24Recall that A
lef=1 = (e-#)*=1 VeeR’.

25This formula holds also with P replaced by the set of all events; i.e. of all positive operators
with trace <1.
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Outline of proof: The spectral theorem tells us that there are an orthonormal basis
{¢v},en of H and real numbers Ay, ..., A, with

p=i'=) Mo (5.33)
v=1

and .
> A =0. (5.34)
v=1

Then

and, therefore,

%

o+

=

&

Q

@
N

vl

>

S

&
N——

+

o+

=

&

Q

@D
N

v

A\, qb,,) VPepP
n}

ve{l,...,n} ved{l,...,
Ay >0 A, <0
with equality for
P= 3 (o)
ve{l,...,n}
A >0

By (5.33) and linearity of the trace, this implies (5.32). g

Now it is obvious that the trace distance is a metric on the set of states:?0
D(ﬁla ﬁZ) 2 0 )

D(p1.p2) = 0 <= pr=p,
D(ﬁl)ﬁZ) = D(ﬁ?vﬁl)v
D(p1,p3) < D(p1,p2) + D(pa, p3) -

Corollary 5.2.5 Let 'H; and Hs be finite-dimensional HILBERT spaces and let
¢ € Q(H1, Hy) be trace-preserving. Then Q(Hy, H1) is contractive w.r.t. the trace
distance, i.e.:

D(€(p),€(7)) < D(p,i) ¥p.il € S(H).

DRAFT, June 26, 2009
%6The inequality follows from (5.32) and

trace (p1) — trace (p3) = (trace (p1) — trace (ﬁg)) + (trace (p2) — trace (/33)) .
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Outline of proof: With ¢1,...,¢, and Aq,..., A, chosen as in the proof for (5.32),

we have?”

I
-+
—
2
a
@
VR
=
N
&
>
<
S
N
N———
~_—

ve{l,...n

AV¢V)>+trace<]5¢< Z )\yqﬁy))
yeesm} ve{l,...,n}

Au >0 A <0

— trace (P(@(ﬁ) - é(ﬁ’))) VPeP.

V
=g
2

o

o

7N
=
TN

This, together with (5.32), proves the theorem. |

Corollary 5.2.6 Let ‘H be a HILBERT space and N € N. Moreover, consider
P1s--s Py €S(H) and py,...,py > 0 with

N N
Sp=1=> 1. (5.35)
v=1 v=1

Then

N N N N
. . 1 .
D (Zpypy , ZPLPL) <5l —wl+ pDp ). (5.36)
v=1 v=1 v=1 v=1

Outline of proof: By Lemma 5.2.4 there is a P € P with
N N N N
D(Snie Sootit) = e (PY 3
v=1 v=1 v=1 v=1

N
= E (pl, trace (I:’ Py — Pﬁ;) + (p, — pl,) trace (P ﬁ;))
~———

vt 5 5 €[0,1]
< D(pv.p,)
L.5.2.4
< Zpu BB+ > (w—p)).
VE{l,...,N}
py—p}, >0
Together with
N
> - Z
ve{l,...,N} (5 35 =1
py—pl, >0

this implies (5.36). g

DRAFT, June 26, 2009

2TRecall Footnote 18 of Chapter 4.
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A direct consequence of (5.36) is

N N N
D <Zpy vy > Do ﬁL) < Z (bv+ 7)) (5.37)
v=1 v=1 v=1

Moreover, setting p!, = p' in (5.37) and recalling (5.35), we get

N
D (Zpyﬁy, A’) < Zpy (b, 7). (5.38)
v=1

Another important measure for the distance of states is the BURES fidelity:*®

F(p,p) < (trace K/(+ I {/E)T (W W))
Since {/]v) (¥ = [¢)(«| and hence

/WL T = YT )
= YWIT) )

holds for all normalized ¢ € 'H , we have:

p=10)Wl = F(p,p) =) Vp o eSH). (5.39)

Symmetry of the fidelity in general is not evident from its definition but follows
directly from UHLMANN’s theorem (Uhlman, 1976):

Theorem 5.2.7 Let H be a HILBERT-space and p1, p2 € S(H). Then

A AN 2
F(p1,p2) = \1/1672?%}267;2 (W | Wa)|”,

where®”

7, {\IJGH@H: ﬁ:traceg<|\ll>(llf|>} VjeSH).
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28For commuting p, p’ the BURES fidelity has a simple geometrical interpretation, since

p= Zpu |¢V><¢V‘ )

p= ipl |60) (| = Fp.p) = (Z: \/ZTP’V>

See (Chen et al., 2002) for a geometrical interpretation of the BURES fidelity of general qubit states.
29Note that ’Z; is the set of all purifications of p as introduced in Lemma A.4.8.
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Outline of proof: Let j € {1,2} and ¥; € 7;, . By the spectral theorem, there is are
orthonormal basis { gj),...,@(lj)} of H,somen’ € {1,...,n}, and s§j>,...,s§j,) >0
with

’
n

5 M) o)
Pj ;(Suj) o4

Therefore, the SCHMIDT-decomposition of ¥; has to be of the form

’
n

U, = Z Sl(/j) ¢£j) ® 1/,}(/]’)

v=1
= Y (Vro) o v
v=1

with some orthonormal basis { gj), .. .,ng)} of H. Considering j = 1 and j = 2
together we thus get

’
n

(Ta [ Ty) = ) <Vﬁ:¢£2)

v,p=1

T/E¢L”><¢£2) ‘1/}/5”> _ (5.40)

In order to rewrite the r.h.s. of (5.40) as a trace we use the unitary operators V and
V' characterized by K
Vo =) Yue{l,... n}

and
(6@ |77 6@) = (u@ |ud) Vrue{l,....n}.
Then
<\112 ‘ \Ill> (5:40) u,,u—1< -{/ﬁ;(bl(?) Vﬁ»lf/¢l(f)><¢,(f) V/ ¢l(l2)>
= (| Vi Ve
v=1
= trace ( T/[Tg J{/pTV V/>

= trace (V V' /b2 {/pT)
Applying Lemma 5.2.8, below, to the polar decomposition
~ A A T -
VV' s o= O {/( /%a +\/,51) (Wb t/ﬁl) . U unitary,

(see, e.g., Lemma 7.3.20 of (Liicke, eine)) we always get

s [ wlt < (e §f(77 0)' (72 970))
= F(p1,p1).
gj)

Obviously, by appropriate choice of the v,/ we get equality. |

143


file:eine.pdf#eine-L-PolZer

144 CHAPTER 5. QUANTIFYING QUANTUM INFORMATION

Lemma 5.2.8 Let H be a finite-dimensional®® HILBERT space. Then
)trace (Bﬁ)‘ < HBH VpeS(H), BeL(H).

Outline of proof: By the spectral theorem, there are a an orthonormal basis
{b1,...,¢n} of H and p1,...,p, > 0 with

ﬁzzpu |¢V><¢l/‘ ) Zpu:1~
v=1 v=1

Then

trace (B p)

3 trace (B1,) (] ‘
v=1

Xn:pu <¢u | B¢u>
v=1

g ZPV <¢V | B¢V>
v=1 N———
<|3]|
< Bl . 1

UHLMANNSs theorem and the definition of the BURES fidelity show:

F(ﬁlaﬁQ) = F(ﬁ2>ﬁ1)> (541)
F(ﬁh 162> < [07 1] ) (542)
1 i py =

Using UHLMANNSs theorem one may also show:3!

Alpr, p2) & arccos /F(py, pa) € [0,7/2] is a metric, (5.44)
F(€). €)= Flr i), (5.45)

F(Zpyﬁy,zp'yﬁ’y> > > oo, Flpu. i) - (5.46)

For pure states ¢, :

~ ~

F(Py, Py) = [(¢] )]

= \/1—D(p¢713¢)2-

DRAFT, June 26, 2009
30The given may be directly extended to the infinite-dimensional case.
3INecessary and sufficient conditions for a given set of pure states to be transformable

via a quantum operation into another given set of (not necessarily pure) states are given in
(Chefles et al., 2003, Theorem 4).
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For general states

1 — F(p1,p2) < D(p1, p2)

= F(r, )

Remark: In principle, fidelity and trace distance are of equal use to
characterize the difference of states. However, usually, calculations are

easier with fidelity. Therefore only the latter will be used in the following

Relevant for transmission of (unknown) states

Frnin (Q:) déf

min £ (5, €(5))

minF(]5 , ¢ P ) .
(5.46) v v €(Fy)
¢ is the gate fidelity

Relevant for the (approximate) realization of a gate U as the quantum operation

dof mjnF(UﬁUﬁl
p

= mmF(P ¢
for which we have, e.g.,

b €(Py))

arccos \/F UyUs, € 0 &) < arccos 4/ F(Ul, &) + arccos\/ F(Uy, &

Relevant for quantum sources producing p; with probability p; and disturbed by €
is the ensemble average fidelity

7 def ij <pJ7 )

5.2.4 SCHUMACHER Encoding

Lemma 5.2.9 Let H be a finite-dimensional HILBERT space, po € S(H)
0>0. Then

lim trace
and®?

, and
dn —
n—00 (po Apo 6) =1

2 (51(po)+6) ~ dlm<[x(ﬁ)§ H®n> > 2n(S1(ﬁo) 3) VneN
= po. =
where, for n € N Al

s denotes the projector onto the subspace of all eigenvectors
of p5" with eigenvalues in [2"51(P0)=0) 2n(Si(P0)+9)]

DRAFT, June 26, 2009

32Recall (5.44).

33See (1\[1((1115()11 wnd Jozsa, 2()()3) in this connection
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Lemma 5.2.10 K
Let 'H be a HILBERT space and A a self-adjoint operator on 'H . The for arbitrary
Y1,..., ¥y € H and py,...,pn > 0 we have

N 9 A N N
S p (6| 46 2 2000 (AZpVhM(wVI) S
v=1 v=1 v=1

A, )

Outline of proof: Apply the inequality

2>2rx—1 VzeR

tox = <1/),,
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make a guess, FANO inequality

5.2.5 A la NIELSEN/CHUANG
Klein inequality (Niclsen and Chuang, 2001, Theorem 11.7):3

trace (ﬁ log(ﬁ)) > trace (,6 log(f)')> Vp,p € S(H). (5.47)

Hyin(p) € H<{p, 1 —p}> Vpe[0,1].

PPT criterion
Cat states implemented for JOSEPHSON junctions or coherent states (entangle-
ment laser)

5.2.6 Entropy®

Classically, every message can be encoded in a string of bits. But can
quantum information always be encoded in a string of qubits?!

DRAFT, June 26, 2009
34The r.h.s of (5.47) may become —oo. Equality holds iff p = p’.
35See also (Ohya and Petz, 1993) and (Petz, 2001).
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Chapter 6

Handling Entanglement!

We have seen in 4.4 that perfect entanglement may be used for implementing noiseless
quantum communication. Therefore, quantification and handling (e.g., distillation)
of entanglement is important. Here, for simplicity, we consider only bipartite sys-
tems. One might expect, then, that separability is equivalent to the existence of
corresponding (local) hidden variable models, hence to the validity of all (general-
ized) BELL inequalities.? However, as shown in (Werner, 1989), that this is not the
case.

6.1 Detecting Entanglement

Detecting entanglement of pure states is very easy:
/3 S Spure(Hl ® HQ)

— 0\ 2 R
Lemma A.4.6 (trace 2 (p)) = trace(p) .
TheoremA .4.7

ﬁ S Spure(Hl & H2) U Ssep(Hl & H2)

It is mixedness which can make detection of entanglement a very hard problem
(Gurvits, 2002).

6.1.1 Entanglement Witnesses and Non-Completely Posi-
tive Mappings

Lemma 6.1.1 A state p of the bipartile system S with state space H = Hy ® H
is non-separable® iff it possesses an entanglement witness, i.c. an operator W €
L(H1 @ Hs) fulfilling the following two properties:*

DRAFT, June 26, 2009
1See also (Horodecki et al., 2001) and references given there.

2See (Werner and Wolf, 201; Collins and Gisin, 2003) in this connection.

3Recall Definition A.4.4.

4The second property guarantees that W is Hermitian — thanks to the polarization identity

3
1 AN . .
h(x1,%x1) = 1 Z (=)™ |x1 4+ 1% x2)(x1 + 1% X2 ,
a=0

valid for every mapping h that is linear in the second and conjugate linear in the first argument;

especially for h(¢, 1) = |6) (1]
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trace ()W) < 0.

p separable = trace (W) >0 Vp e S(Hi ®@Hs).

Outline of proof: The statement follows from the known fact® that for every point
X outside a convex set K there is a hyperplane separating X from K. 1

Lemma 6.1.2 (Jamiotkowski) For j € {1,2}, let { ,...,(bnj} be a MONS

of the HILBERT space H; . Then for every W e L(H1 ® Hy) there is a unique linear
mapping Ly, + L(H1) — L(H2) with

W=n(1®Ly)(P,), (6.1)
where
Pf;_? def ]- Z¢,(/1) ® ¢’(/1)><Z ¢}(}) ® (b;(}) (62)
1 v=1 pn=1
Ly fulfills
Sy ([o)(el)]) = D0 (W @02 | W (o) @¢2)) [o2)(e]  (63)
vo,p2=1

for all vy, v € {1,...,n1} and:
£y, positive = trace (W p) >0 Vp € Sep(H1 @ Hs), (6.4)

where’
def

Ssep(H1 @ Ha) = {p € S(H1®@Hz) : p separable} . (6.5)

Outline of proof: Defining 2 i, by (6.3) plus linear continuation gives
W = Z Z <¢91) ® ¢ | W (¢(1> ® ¢(2>)> ¢ & ¢£22)>< (

v =1 va, =1
) S (jef)(ei))

o Z_1< o) (o1

Visp1=

= (1eLy) ( 21: ‘tb(ff ® ¢>91)><¢§31) ® o) )
vi,p1=1

lin. cont.

DRAFT, June 26, 2009
5See, e.g., (Neumark, 1959, $1, No. 9) and (Robertson and Robertson, 1967, Kap. 1, Satz 8).
SNote that

Ssep(H1 @ Ha) = S(H1) Ralg S(Ha).
Theorem A.4.5
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and hence (6.1). Conversely, (6.1) gives

D)) -

£ (

n1
1
oM

{
<¢<1>
, (o

( ICHERT

() (1 24) (P52

>

SICH)

o)

(6
i.e. (6.3). Since
N
trace (W Z i @ pk ) = dim(H;) Ztrace (ﬁ,(il) ® Ly (ﬁ,(f))) :
k=1

positivity of SW implies nonnegativity of trace (W p) for separable” p. Conversely
the latter implies positivity of 'SW , since

(5920 (oY) ) 2, (B

W‘I’¢<1>,¢<z>> Vol e Hy,9® € Hy,

(6.3)
where
dim(H1)
| JPRCOIPRES o ( Z <¢(1) ¢1(/11)>¢5/11)) ® ¢ 1
v1=1
Corollary 6.1.3 For j € {1,2}, let { ¢n} be a MONS of the HILBERT

space H; . Then for every W e L(Hy ® Hs) we have®
trace (pW) < 0 — (l ® %) (D) 20  VpeSHioM,)  (6.6)
and
trace (JW) >0 Vp € Seep(H1 @Ha) <= L1 (52) >0 Vo € S(Ha), (6.7)

where £1. denotes the HILBERT-SCHMIDT adjoint of the linear mapping Ly, that is
characterized by (6.3), i.e.:

trace <£;/(1212) Al> = trace (Ag SW(A1)> VA, € L(Hy), A, € L(H>) .

DRAFT, June 26, 2009
"Recall Footnote 6.
8Positivity of A € L(H) is easily to checked:

A>0 <= det(A—zl)=_c Z (=1)" ¢, z".
~~ —~
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Outline of proof: (6.6) follows from

1 o
—trace (pW) = trace

o W (10 Ly )( ))
)

(7
—  trace ((1 ® L1 )

and (6.7) from (6.4).

We may conclude:

1. If W is an entanglement witness for j then (1 ® QLV> (p) 2 0 and, there-

fore, the positive map SLV cannot be completely positive.
2. For every positive mapping £ : Hy — H; we have:”

(1®L)(P) 20 = p & Seep(H1 ® Ha).

3. A state p € S(H; ® Hz) is separable if and only if (1 ® £')(p) is positive
for all positive mappings £ : Hy — H; .

Remark: In general, for detecting entanglement, SJIEV is more useful

than T since _
i.g. R
£L(p) # 0 #= trace (W p) <0,

W, on the other hand, allows to detect entanglement by local measure-
ments (Giihne et al., 2002).

6.1.2 Examples

Lemma 6.1.4 The flip operator of the bipartite system S with state space HOH ,
i.e. the linear Operator F' on H ® H characterized by

Fh®vs) Ea @ty Voo, 00 €M, (6.8)

has the following properties:*°

1.

DRAFT, June 26, 2009

90f course this statement is relevant for non-completely positive £’ only.
10Recall Definition A.4.4.
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F=P P,

where the ]
R;§§<iiﬁ>
are the projectors onto the symmetric resp. anti-symmetric pure states of S :

VeP (HOH) = FU=40 VIecHQH.

3. Forall B €R:

1+B8F>0 < pfel-1,+1].

~

trace (F') = — dim(H) .

5 Forallpe S(H®H) :

~

p separable = trace (F'p) > 0.

Outline of proof: The first four statements are more or less obvious and the last
one follows from

trace( £ (jun) il @ x)val) ) = trace (Flur @ ) & v
trace (|2 @ v1) (11 @ 2]
(1 @ P2 [ P2 @ 91)
(Wl g

Consequence: The flip operator F'is an entanglement witness for the
mixed WERNER states'' pw(3) with 3 € [-1,—1/dim(H)], where

pu(p) o LT
W = - -
trace (1 + B F)

VB e [-1,+1]. (6.9)

DRAFT, June 26, 2009
1 Compare Footnote 27 of Chapter 4.
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For H; = Hy = H the positive linear mapping (6.3) associated with the flip operator
on H ® H is the transposition'? w.r.t. {¢1,...,¢,} = {¢§1’, . 7925%11)} :

i (16n)(0nl) = T(16w)(60)
|Gr2) (| (6.10)
2;(\¢V1><¢,,2|) Yu,ve e {1,....n} .

While the flip operator cannot be an entanglement witness for, e.g., the F-invariant
pure states,'® a two-qubit state p is separable iff its partial transpose (1 ® ) (p) is
positive. Slightly more generally we have:

Theorem 6.1.5 For j € {1,2}, let { (1j), c ﬁf])} be a MONS of the HILBERT
space H; . If ny +ny € {4,5} then an arbitrarily given state

Z Z Porvapa |60 ® 62N @ 62| € S(Hy @ H)

vi,u=1vo,u2=1

is separable iff it has a positive partial transpose:'*

Z Z Pravapps |01 ® 020 ) (@)) @ 632)] > 0.

vi,u=1rvo,puo=1

Proof:'® See (Horodecki et al., 1996, Theorem 3). |

Another example for Hy = Hy = H and {¢1,...,¢,} = { gl),---,qégl)} =

(o} s

W o= iH@H_np;l_
_ f: (|¢V><¢H|) ® (5,,“1 - |¢V><¢u|)
v, p=1

= m (1@ LR) (P,

DRAFT, June 26, 2009
2The transposition was considered at the end of 4.2.1.

13See, however, (Horodecki and Horodecki, 1996).

MPositivity of the partial transpose, contrary to the partial transpose itself, does not depend on

the choice for the MONS {¢(2) ceey 5?2)}
15The essential point is that — provided n; + ny € {4,5} — every positive mapping £’ :
L(H2) — L(H;1) is decomposable; see (Labuschagne et al., 2003) and references given there.

For entangled PPT states in higher dimensions see (Ha ct al., 2003).
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where

ew(B) = £h(B) (6.11)

' trace (B)—B VYBeL(H), (6.12)
Obviously, £5, is positive and

(1@ Ly) (p) = traces(p) @1 —p Vpe L(H).

Therefore, '
trace2(P) @1 2 p = p ¢ Seep(HOH). (6.13)

6.1.3 Other Criteria'’

Up to now, in view of Corollary 6.1.3, we considered the entanglement criterion

Lo L)P) 20 = 5 ¢ S.(H & H). (6.14)

>0

only for positive maps £ : L(Hs) — L(H;). But, of course, (6.14) also holds for
positive maps £ : L(Hz) — L(H2). Typical examples are

1. £=%:

Every separable state p € S(H; ® Hs) is PPT, i.e. has a positive
partial transpose (1 ® ¥)(p) — for every choice of MONS.

2. £=¢b: A
p € Ssep(H1 ® Hy) = traces(p)®@1>p. (6.15)
Remarks:
1. Since'®
T
(LeD() =@oD(h) VieSHeH)
and

trace ((1 ® ‘Z)(,ﬁ)) =1 VpeS(H®Hs),

DRAFT, June 26, 2009
16See (Hiroshima, 2003) in this connection.
17See also (Doherty et al., 2003)

BNote that

(1® ) (A1) = ((1 ® z)(/i))T VAeL(H®H,).
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we have!?

10%)(p) 20 <= [T, >1 Vpe S(Hi®Ha),

as exploited in (Vidal and Werner, 2002).

2. Since?

T(#') = (-1)* ¥ Vve{0,...,3},

we have for two-qubit states p :!

1®%)(p)=p <— trace((T“@)T))—OVue{O .3} .

3. Forall p € S(H; ® Ha) :

(L@T)(P) W=\ ¥#0

Y
N { (1®%) <]\I/><\IJ|> entanglement witness for p,

U non-separable .

Let us list some other sufficient criteria for entanglement:

1. Range criterion:*

ION (¢(2))* ¢ range((l ® S)(ﬁ)) Vo) @@ e range(p)

(6.16)
- ﬁ ¢ Ssep<H1 & H2) )

where
na

) o

v= 1

depends on the MONS {¢12 e ,qbfz } of Hy.

Outline of proof: By Theorem A.4.5 (and the spectral theorem), every p €
Ssep(H1 ® Ha) can be written in the form

= 2| @ uf?) (o 0.

DRAFT, June 26, 2009
YRecall (5.31).
20Recall (A.22)
2LCompare (Altafini, 2003, Sect. IL.B., Corollary 1).
22This criterion especially implies that every state p € S(H; ® Hs) containing no product state

in its range must be entangled. For a non-separable PPT state on C? @ C* containing product

states in its range and fulfilling the range criterion see (ITorodecki et al., 2001, Eqn. (27)).
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Then Lemma A.4.2 implies
(1) 1/)(2) €range(p) Vke{l,...,N}

and, since??

b

(Le D) Z ol @ () ) (ol e (v?)

also

1/J;(cl)®( ,(62)>*€range((l®f)(ﬁ)) Vke{l,...,N}. i

2. Entropic inequalities:**

ﬁ c Ssep(H1 & HQ)
a€{0,1,2,00}

} — S, (trace (p )) < Su.(p) Vjie{l,2},| (6.17)

(more information for the total state than for the partial states), where®®

e logz(trace (,5“))
Sa(ﬂ) =

1~ a Va e (0,1)U(1,00) (6.18)

and?®

Si(p) < lim Su(p) ¥k € {0,00} .

3. Greatest cross norm criterton (Rudolph, 2000, Thm. 5):

pE Ssep(Hl & Hz) <~ HPAH,Y =1, (619)

where

N
2| 3 ALY e AP — A, N eN} (620)
F=ler(my)  ec(ma)

A

N
def inf{z HA,&I)
7 k=1

for A e L(H, ® Ha).

DRAFT, June 26, 2009
ZRecall (4.14).

248ee (Vollbrecht and Wolf, 2002, Sect. IIT) and references given there.
25The normalization factor 1/1 — a guarantees

Sa log, ( di
;xS () = ng( lm(H))

for the so-called RENYI quantum entropies S, ; see also (Lavenda and Dunning-Davies, 2003).
26Note also that
$1(5) = lim  Sa(p).

I<a—1
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4. Computable cross norm criterion®” (Rudolph, 2002, Prop. 19):
(6.21)

pESepHOH) = AP <1,

where the linear mapping 2 : L(H ®@ H) — C(C(H)) is characterized by

(1601 © Gua) {001 © Byl ) A oo
def - 2 :
(G0 Aua ) 100) (@] Yor v 1 € {1, n} A € L(H)
w.r.t. the fundamental MONS {¢1,...,¢,} of H.
5. Reduction criterion® (Horodecki and Horodecki, 1999):
- ﬁ Z 0;
. (6.23)

) traceo(p) ® 1
p € Ssep(H1 @ Ha) { 1 ® trace(p)

6.2 Local Operations and Classical Communica-
tion (LOCC)

6.2.1 General Aspects

By local operations and classical communication (LOCC) state transforma-

tions of the form?’
(6.24)

N
p— P =Lrocc(p) = > pr (QS) ® Q:;EQ)) (»)
k=1
can be implemented on a bipartite system with state space H; ® Hy, where
N
N eN =1
NS

=1 >p

and the C,(Cl) resp. @,(f) are trace preserving elements of Q(H;, H;) resp. Q(Ha, Hs) .

Obviously,
v e Hy, Y@ eH
o] :1||¢(2)H = Socc(@V @) = S (M@ M), (625)

DRAFT, June 26, 2009 ___
2"Note that for dim(H) > dim(H;),dim(H>) there is a canonical mapping of S(H; ® Hsz) into
S(H ® H) respecting separability. Therefore, it is sufficient to consider the case H; = Hs .

ZSee (Hiroshima, 2003), in this connection.
29Obviously, the LOCC quantum operations (6.24) form a group.
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where
Srocc(p ) = {states P of the form (6.24)} .

In order to characterize the possible transformations of pure states by LOCC we
need the following definition:

Definition 6.2.1 Let ]:], H' be Hermitian operators on the HILBERT space H with
spectral decompositions

H:ZEV‘wVMwV’ ) H,:ZE;/|¢L><¢,
v=1 v=1

Then we write H < H’ iff*° there p1,...,p, > 0 and permutations my, ..., 7, € Sy
with

EHZZPVE;V(#) Vpe{l,...,n}, Zpyzl_
v=1 v=1

Theorem 6.2.2 Let ]:], H' be Hermitian operators on the HILBERT space H . Then
H =< H' iff there are pq,...,p, > 0 and unitary Operators Uy, ..., U, on H with

fI:ZpV U,H' U, Zpl,—l

v=1

Proof: See (Nielsen and Chuang, 2001, Theorem 12.13). g

For pure states and H; = Hs, concerning LOCC, nothing is lost if the operations
on one side are restricted to be unitary:

Lemma 6.2.3 Let H be a HILBERT space, 0 # ¥ € H®H and M € L(H). Then
there are N,U € L(H) with

A~

(i@M)\p:(N@U)xp, ot =01,

Outline of proof: According to Theorem A.4.7 there are non-negative numbers
$1,...,8, and orthonormal bases { (1 ,...,d)(l)} and { (2)} of H with

n

U = Z 500 @02 | n def dim(H) .

DRAFT, June 26, 2009

300bviously, < does not depend on the choice of orthonormal eigenbases for H, H' and gives a
semi-ordering of S(H).
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Then, writing

M = Zn: M,,

v, p=1

o) (42|

and defining
¢y def -
B S M o) o)
v,u=1
we get
S(N’®i)\11: (i@M)\I/,
where S denotes the linear swap operator characterized by

def

Sop = Yy Vo, eH.

Therefore (N’ ® i) ¥ and (1 ® M) ¥ have the same SCHMIDT coefficients, i.e. there

are unitary U,V € L(H) with
(i@M)\IJ: (V@U') (N’@i)\l!.

Defining N ¥ VN we get the statement of the lemma. |

The state £rocc(p) in (6.24) can be pure only if it coincides with (Q:,(cl) ® Q:,(f)> (p)
for all k£ € {1,..., N} with px # 0. This, together with Theorem 6.2.2 allows us to

prove the following:

Theorem 6.2.4 Let 'H be a HILBERT space. Then

NN

P € Srocc(p) < traceq(p) <X tracey(p’) Vp,p

€ Spure(HOH).

Outline of proof: Assume that (6.24) holds. Then, by Lemma 6.2.3, £1,0cc can

be chosen such that

7 =3 (100 0,) o (1 0 0))
j=1
xp’

holds with N’ € N and M;,U; € L(H) fulfilling

N/
oMMy =1, U;=U] Vje{l,....N'}. (6.26)
j=1
This implies
M; trace o(p) ]\Zf; = pjtraces(p’) Vje{l,...,N'}, (6.27)

where
/ def

P = trace (MJ trace 2(p) M;) vie{l,...,N'}. (6.28)
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Using the polar decomposition

A A A\ T N
{/trace 2(p) Mj = U J{/( {/trace 2(p) MJT) {/trace 2(p) Mj
= U J{/Mj trace 2(p) M;
= U; /p, traceo(p
(627) J p] 2(p)

and multiplying from the right with its adjoint gives

{/trace o(p) M;M] {/traces(p) = p); U; trace »(p) (7; Vie{l,...,N'}.

Finally, summing over j gives

N/
traces(p) = ' U traceo(p') Ul 6.29

and hence trace o(p) =< traceo(p’), by Theorem 6.2.2, since (6.26) and (6.28) imply
N/
> ph =1 (6.30)
=1~
>0

Conversely, if p1 < p} , where

def R o def R
pr = traces(pr), 1 = traces(p),

then Theorem 6.2.2 implies (6.29) for suitable unitary U,..., Uy € L£(H) and
P, ..., P > 0 fulfilling (6.30). Then, if we define

A def N AT o~ 1- Py )
M; = 0 U (1o M) T Poy + ——2= Vjie{l,...,N'}

(6.29) and (6.30) imply

oM =1 (6.31)
j=1
and
traceg(<Mj®1> (MT®1)) ptraces(p)) Vie{l,...,N'}, (632
Since

traces(p") = trace () } . (iw0)p (1e0f ) 4
P p" € Spure(H ® H) TheoremA.4.7 | for some unitary U € £ (H),

(6.32) shows that there are unitary Vi,... Var € L(H) with
(%@%)ﬁ(]\%}@@) =p,p Vje{l,...,N'}.

This, together with (6.30) and (6.31), shows that p can be transformed into p’ by
LOCC. j

161
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Lemma 6.2.5 Let I;T, H' be Hermitian operators on the HILBERT space H with
spectral decompositions

H=Y B, H =Y E)Wl.
v=1 v=1

Then H < H' iff the conditions

Y E =) E, (6.33)
v=1 v=1
and ) ,
< ! ! I :
f}%‘%}: — Eﬂ'(V) — géas}le Eﬂ'(l/) vn' e {17 T 1} (6 34)
are fulfilled.

Proof: See (Nielsen and Chuang, 2001, Proposition 12.11). |

Remarks:

1. Obviously,

2. According to Theorem 6.2.4, therefore,!
Spwe(H & H) € Spoco( B ) -

3. For qubit states p, p/ we always have either p < p/ or p’ < p or both.

4. However, for higher dimensional H neither p < p’ nor p’ < p need
be true for p, p’ € S(H) as application of Lemma 6.2.5 to, e.g., the
case

1

1
ﬁ=1—5(7¢1+7¢2+¢3) , ﬁ=1—5(11¢1+2¢2+2¢3)

shows if {¢1, p9, d3} is a MONS of H .

Note that LOCC would be much more powerful if intermediate use of nonlocally
entangled ancillary pairs, restoring their original states, could be made:

DRAFT, June 26, 2009

31Recall (6.2).
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For j = 1 resp. j = 2 let {qﬁgj),..., ,(f])} be a MONS of the HILBERT
space H; , let

U — Z )‘vu¢ 1) & ¢(1) U — Z)‘Lu s

vp=1 V1

be pure states of the bipartite system with state space H; ® H; and let

23030 M (0 1>®¢g>)®(¢g>®¢g>),

V1 aﬂ 1
=Y N (A 0o o (o) @ o)
v a,B=1

be pure states of the bipartite system with state space (H; ® Hs) ®
(Hy ® Hs). Then it may happen that*

(W) Z W) but  |&) < |0

— an effect of the ancillary system in the state Z N 2 ® qbﬂ that

a,B=1
is called entanglement catalysis.

Finally, given p, p' € Spwe(H ® H), let us note that p can be transformed into p' by
local operations without communication iff

trace»(p) o K trace,(p) KT, KK <1 (6.35)

holds for some K € £(H). Let

trace o(p Zpu o) (W], trace(p Zpy ¥,

be spectral decompositions of p, p". Then, exploiting unitary transformations and
the polar decomposition of K one can show that (6.35) is equivalent to existence of
real numbers ki, ..., k, and a permutation © € S,, with:

n

Z(kl/)Q <1, p; - (kl/)pr(y) Vv e {1, . ,TL} .

v=1

DRAFT, June 26, 2009
328ee (Niclsen and Chuang, 2001, Exercise 12.21) for an explicit example with (nq,n2) = (4,2).
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6.2.2 Entanglement Dilution

6.2.3 Entanglement Distillation
See, e.g., (Bowmeester et al., 2000, Section 8.4) and (Devetak and Winter, 2005).

6.3 Quantification of Entanglement’’

For pure states |V)(V| of a bipartite system S with state space H = H; ® Hy
there is a generally accepted measure of entanglement, namely the entropy of
entanglement?*

e (10)(0]) & 8y (brace, (w)(w]) ) (6.36)

. K.4.7 Sh (trace1<|lll)<\11|>> ,

i.e. the vON NEUMANN entropy of the partial states. Since
Epure (Z N ¢<f>> ==Y p, log(p)
v=1 v=1
>0
holds for SCHMIDT decompositions, Epure<|\1/> (\I/|> becomes maximal®® for

1
n = min{dim(Hl),dim(HQ)} ;= Vve{l,...,n'}.

Hence

pmax E(|\I/> <\If|> = log, ( min{dim(Hl), dim(Hs) }) (6.37)
hwii=1

holds for £ = Fe -

Strict requirements for every entanglement measure F on S(H; ® Hs) :

1.
E(p) >0 VpeS(Hi®@Ha).

DRAFT, June 26, 2009
33Gee also (R(‘llzi‘(‘(‘]\' and Hradil, 2002).
34The unit of entanglement is one ebit.
35Recall Remark 3 in the beginning of Section 5.1.
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E(p) =0 VpE Seup(H1®MHa).

E(ﬁ):O = ﬁeSsep(Hl(X)HZ) VﬁGS(H:[@Hz)

(could be relexed by cosideration of additional entanglement measures).

P € Suocc(p) = E() < E(p)  VYp,p € S(H1®@H,).

5. For all pure states |[W1) (U], [Ua)(Us| € S(H; @ Hao) :

Bpune (|90 (011) < Bpuro ([W2{We] ) = E(|00)(91]) < B(|02) (¥a]).

Desirable for entanglement measures £ on S(H; ® Ha) :

1.
E(ﬁ) > E(ﬁ/) - ,6/ € SLOCC(ﬁ) Vﬁ, ,5/ < S(Hl & HQ)

(not possible).
2. Continuity
3. Additivity
4. Subadditivity

5. Convexity

Standard entanglement measures:*°

1. Entanglement of formation® is the convex continuation

~ ef . ~
Ex(p) o . 12f ; >, St (traceQ(pl,)>
I~

0 pure

of the entropy of entanglement (6.36) to all of S(H; ® Ha).
Additivity of the entanglement of formation is generally conjectured but not
yet proved.

DRAFT, June 26, 2009
36There cannot be a unique entanglement measure (Morikoshi et al., 2003).
3TFor pairs of qubits the entanglement of formation coincides with the comncurrence
(Wootters, 2001, Section 3.1).
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Squashed Entanglement (Christandl and Winter, 2004)

e In general, WERNER states are not maximally entangled, i.e. their entangle-
ment of formation (tangle) is not maximal for given a fixed degree of mixedness
(linear entropy) (White et al., 2001).

Compare with (FEckert ot al., 2002). (see also quant-ph/0210107)

What about local superselection rules? (Verstracte and Cirac, 2003;
Bartlett and Wiseman, 2003)

Exploit the notion of truncated expectation values. (Lee et al., 2003)
What is the generalization of the latter for mixed states?
Existiert ein Abstandsmaf a la (Lee et al., 2003)7

Warum verwendet man nicht den HILBERT-SCHMIDT-Abstand von
Zustanden, der sich leicht mithilfe von Erwartungswerten von (Pro-
dukten von) PAULI-Operatoren ausdriicken 148t7

Besteht ein Zusammenhang mit (Lee et al., 2003)? Der Abstand
zur Menge der separablen Zustande sollte doch ein Maf} fiir Ver-
schranktheit sein...

Remarks:

1.

For (dim(H;), dim(H,)) either (2,2) or (3,2) PPT w.r.t. the second
factor is necessary and sufficient for separability (Horodecki et al., 1996).

. Otherwise states with bound entanglement, i.e. entangled PPT

states, exist (Horodecki et al., 1996, Appendix).

. In the 2-qubit case every entangled mixed state can be represented

as a convex combination of a separable (in general mixed) state
with a pure entangled state (Lewenstein and Sanpera, 1998). The
representation with minimal norm of the pure state is unique.

Also this shows that, for the 2-qubit case, separability is equivalent
to PPT.



Appendix A

A.1 TURING’s Halting Problem

The halting problem is the following:

There is no algorithm by which one may decide for every program and
every finite input to the program whether the program will halt or loop
forever.

The proof given by TURING is essentially as follows:

Since every program may be encoded into a finite sequence (by,...,b,)
of bits the programs may be indexed by the corresponding numbers
22:1 b, 2"7" . The same holds for all finite inputs. Now assume that
there is an algorithm telling us for all (j, k) € Z% whether program j will
halt on input &. Then this algorithm may be used to write a program
P with the following property:

For every j € Z, , program P will hold on input j iff program
7 will not.

Obviously, program P is different from program j for every j € Z, — a
contradiction.

A heuristic explanation is the following:

There are uncountably many possibilities for infinite loops which, there-
fore, cannot be checked in a systematic way. But we cannot be sure
whether a given program will halt on a given input or not unless

e an infinite loop is found by chance or

e the program was actually tested on the input and found to halt.

Let us finally note that the halting problem is a solution to HILBERT’s 23rd
problem (see http://aleph0.clarku.edu/ djoyce/hilbert/).

167
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A.2 Some Remarks on Quantum Teleportation

Even though quantum teleportation, described in 1.2.2; seems to indicate some kind
of quantum nonlocality, there is a naive ‘explanation’ relying on locality and some
kind of realism:

There is a set of four compatible relations, corresponding to the BELL
states, between a pair of qubits. These correlations are so strong that
the state (predicting ensemble averages) of the second qubit is fixed by
that of the first qubit and the BELL relation (considered as an element of
reality). Therefore, Alice need only inform Bob about the BELL relation
of qubit 1 to some qubit 2 with known BELL relation to Bob’s qubit
3 in order to enable Bob to transform qubit 3 into the unknown state
of qubit 1. If qubits 1 and 2 are accessible to Alice and far apart from
Bob, then Alice can access this information without influencing Bob’s
qubit (thanks to locality) , although disturbing qubits 1 and 2 in an
uncontrollable way.

Strictly speaking, of course, this picture is inconsistent:

Two qubits may be in a factorized 2-qubit state with factors meeting
none of the BELL relations. Nevertheless we claim that one of the BELL
relations is an element of reality which we find by measuring w.r.t. to
the BELL basis.

This inconsistency, however, is typical for our talking about quantum systems:

Even when we know the state ® of a system (since its preparation is well
specified), we may ask for the probability |(¥ | ®)|* to find it in another
state U .

Concerning the BELL relation the situation is even less disturbing;:

The 1-qubit states give no information about the actual relation between
the partners of the individual pairs. Selection into subensembles corre-
sponding to the 4 BELL relations has to be expected to change the partial
1-qubit states — even from a classical point of view.

In order to test for the BELL relations it seems necessary to get the qubits into
contact — not necessarily into interaction (Resch et al.. 2002; Hofmann and Takeuchi, 2002).
This way they loose their identity — a natural reason for the change of the total (in-
ternal) state through measurement.

It seems that the BELL relations may be taken as elements of reality, but they
can be applied to only one (freely chosen) set of 1-particle ‘properties’.!

DRAFT, June 26, 2009
"More generally, see (Griffiths, 2002).
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A.3 Quantum Phase Estimation and Order Find-
ing

Exercise 25 Show that the following quantum network acts as indicated if \Tlcp is
a n-qubit eigenstate of the unitary Operator U with eigenvalue !¢ :

0) +H] 75 (10) + 2" 1))

é

7

-

0) + 2% [1)

0) +ci2'¢ I1>§

U? @ -

KiC
A
—
=
)
-
N
T
I
—

First, let us consider the case

0 =2m for some b € {0,1}™" . (A1)

2m+1

Since
m—+1

(A1) = 2" —exp | i2n Z A
p=(m+1)—v+1

9

(2.22) tells us that

(A1) = by = F! (2—’%“@ (|o> +ei2(”+”‘”¢|1>)> . (A.2)

v=1

Therefore, the phase ¢ considered in Exercise 25 can be determined by applying the
inverse quantum Fourier transform to the state

m+1
b 2@ (0t )

v=1

L (A.3)
_m+1 i oq
= 2 ? Z e’ |j>m+1

=0

of the first m + 1 qubits of the output produced by the described network and
measuring the result — if (A.1) holds exactly and everything works perfectly.
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If p € [0,27) is not of the form (A.1), we have

am+l_q
~ ] 1 . . . 27 .
F1d i otk GRET I |k
7 A3 218 2mT ;0 e
J7 =
1 am+l_q j
27
- om+1 Z <6 (- 2m+1)> )1
j,k=0

g —o 11— ei%(%_zmkﬂ) el
1 om+l_1 . 12m+1<p
= DYs) kE (g o) Mt (A4)

Then (A.4) implies that the probability p(k) for finding |k), .., when testing F o,
fulfills the inequality
-2

p(k) < 55 (A.5)

< el erst

Let us define

D(k) %1‘2’”“ (% - ,,) - k:‘ VkeZ.

Then, given d € {3,...,2™ — 1}, the probability pq for getting any state [k), ,
with D(k) > d when testing F~'®,, fulfills the inequality

1

Proof: Choosing kg € {0,...,2™"! — 1} such that
def @
A= 2" Z ke (0,1
2w 0€(0.1)

we get

Pa = Z p(k)

kefo,...2m+ -1}

D(k)>d
) A o k—kg |—2
< 221m z : ‘1 o ezQﬂW 67127r 2m+(i
(A.5) ke{o,..2m 1 —1}
min,, ez |kg—k—v2mt1|>d
j —2
. A )
— L 1 _ 67‘27T2n1+1 677‘277-2771]4»1
22m Z
je{ 2" 41, "}
in,ezli— Vz"‘+1\>d
L =2
. A .
< 1 2 : 1 _ezQWW e—zQwﬁ
- 22m

je{—2m+1,...,2™}
GE{—d+1,..,d=1}
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By (A.6), therefore?

1
Pa 22m Z

je{—2m+1,...2m}

IN

JE{—d+1,...d—1}
—d

=1l X (A—j)‘2+Z(A—j)‘2)

==

IA
|
ML
o
3
_|_
o
|
)
[\)
N— —

IN
|
|
N}

IN
NSRS
1
' 3
()

Wl &

(A.6) tells us that, with probability > 1 — (d — 2)'/2, testing F*1é¢ w.r.t. the
computational (m + 1)-qubit base gives a state |b) for which
I(b) d

Iglé%l cp—27ri/—27r2m+1 §27T2m+1.

Now, let x and N be arbitrarily given coprime positive integers. Then the order
finding problem is to determine

rd:efmin{r’eN: f":lmodN},

the order of x modulo N .

Defining
Ldéfmin{leN:NSQI}
and
[jmod N| < min{k €Z, : k=jmod N} VjeZ,

DRAFT, June 26, 2009
2Note that

sine’ > o > 19] Vo e [—m +7],
T

21 7 22

3| =

since

0 0 1 0 1
sin — = — —_—> 0 .
(bln ) 5 cos N 0 V6e[0,+n]
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we have?
r= ‘{Hxﬂ modNDL : jeN}'

and
<[xj modN} ‘ [kaodN]>L: ik Vi ke{0,1,...,r—1}.

Therefore the states

[y

W, d;fiT 7277 |29 mod N]), Vs e {0,...,r—1} (A7)
J

Il
=)

are normalized and, thanks to (2.17), fulfill the equation

r—1

=Y = ([ mod N]), Vi€ {0, -1}
s=0

=

Especially for j = 0 the latter gives

=2 Z‘P (A8)

We do not yet know the states W, explicitly since we do not yet know r. But we
know that these states exist and have the nice property that they are eigenstates of
the unitary* L-qubit operator U characterized by

A def{][:r;ymodN])L ifye{0,...,N—1}

p— L_
Ulvie =\ 1) else vy e {0,...,2" =1} .

More precisely, we have
UU, =270, VYse{0,...,r—1}.

Therefore, replacing n by L and \il@ by [1), , in Exercise 25 we get the total output
state®

r—1
1 v
— E Pors @ U, .
\/F s=0

Since the ¥, form an orthonormal subset of the L-qubit state space, we may assume
that the partial state of the system of the first m + 1 qubits is one of the vector
states ®ors with equal probability and the results concerning phase estimation show:

DRAFT, June 26, 2009
3Recall (1.12).
“Note that, because ged(z, N) =1,

1 #yamod N = zy; # xy2 mod N.

"Recall (A.3).
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When ! (f%% is tested w.r.t. the computational (m + 1)-qubit basis
the probability for getting a state |k), ., with

k d
ro2mAl| T gmAl”
. 1
for d > 3, is not less than 1 — —— .
2(d—2)

Choosing d and 2™ /d sufficiently large we obtain, this way, an excellent approxi-
mation k/2™! of s/r for some random s € {0,...,r — 1}.

A.4 Finite-Dimensional Quantum Kinematics

A.4.1 General Description

The state space of a finite-dimensional quantum system is a finite-dimensional
complex EucCLIDean space H the inner product of which we denote by (. | .).

The vectors ¢ € H with norm 1 correspond to pure states.’

In the interaction picture, used here, the state vectors ¢/ do not depend on
time as long as the states are not disturbed by additional interaction (e.g. with
some ‘measurement’ apparatus).

The state vectors label equivalence classes of preparation procedures for en-
sembles of individual systems of the considered type.

Preparation procedures are called equivalent if the ensembles they provide
cannot be distinguished by the statistical outcome of measurements.

Important measurements performable (in principle) on individual elements of
an ensemble are projective measurements:

The individual drawn from an ensemble with state vector

b= (6,10,

v=1

will be forced to a transition (if necessary) into one of the ¢,-
ensembles.” According to the rules of quantum theory we have®

(¢, | 1)|* = probability for the transition ¢ — ¢, (A.9)
forall v e {1,...,n}.

DRAFT, June 26, 2009

6We assume that there are no superselection rules.

Le., an ensemble formed by a (sufficiently ) large number of individuals for which ¢, is ‘mea-
sured’ actually corresponds (sufficiently well) to ¢, , unless additional perturbations have appeared.

8Therefore, {(¢,u | ) is called probability amplitude for the transition 1) — ¢, .
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e Observables are operators A € £L(H) of the form

A= Z a, |ou){odu] , {b1,...,¢n} an orthonormal basis of H,| (A.10)

v=1 er

with the following interpretation:

In a state with state vector ¢, the physical entity A (corresponding
to A) has the definite value a, .

This together with (A.9) implies:”

A expectation value for A
trace (W)(WA) = { P ton vate for (A.11)

in a state with state vector 1.

e Individuals which are only known to be members of an ensemble with state

N
vector ¢; with probability A; for j € {1,..., N}, Z Aj =1, form an ensem-

j=1
ble to be described by the density matriz'’
N
p= N W, trace(p) =1, (A.12)
——— =~
= >0 normalized
in the sense that
trace (p A) = expectation value for A. (A.13)

e In this sense, the set of all states corresponds to
S(H) & {A € L(H): A>0, trace (A) = 1} .

States'! with p? # p are called mized.

DRAFT, June 26, 2009

9Note that

trace (16061 4) = Y au (6, |9 = (] 4v)
v=1

10Such ensembles arise, e.g., from projective measurements on pure states if the individuals are
not selected according to the ‘measurement’ results.
"From now on we identify states with their density matrices. Note that

= [) (x| for some 1) € H = P =p.

>
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Lemma A.4.1 Let py,p2 € S(H). Then
0 < trace(p; p2) <1

and
trace (p1p2) =1 <= JveH: p1=p2=[L)(¥].

Outline of proof: Thanks to the spectral theorem there are an orthonormal basis
{d1,...,¢0n} of Hand \q,..., N\, > 0 with

)al = Z Ay |¢V><¢u‘
v=1

and hence

trace (p1 p2) = Z Ao (Dp | du) (v | P2 )

v, p=1
= ) A (o] p2o) -
v=1
Therefore, 0 < trace (p1 p2) < 1 and

trace (p1 o) =1 <~ (O<)\y<1:><¢,|,62¢y>:1> VYupe{l,...,n}
<— 3V0€{1,.../ﬂ}3,51::52:|¢V0><¢V0|' |

Lemma A.4.2 Let'? ¢, ...,y € H. Then

(Z \¢k><wk|> H = span <U {wk}> . (A.14)

Outline of proof: Thanks to the spectral theorem there is an ONS {¢1,..., ¢} C
‘H with

N n’
> )@kl =D A ) (00| (A.15)
k=1 v=1

for suitable A1,..., A\, > 0 and, consequently,

(Z W)(ml) H = span (U {¢k}> : (A.16)

k=1 k=1

Then
N

N
Z|<X\¢k>|2 Z<X|1/Jk><‘¢k|><>

k=1 k=1
’

DA xeu)ow | x)

(Aj5)

= Y M) VxeH
v=1

DRAFT, June 26, 2009
121f not stated otherwise, by H ,H1, , Ho we denote arbitrarily given finite-dimensional complex
EucLIDean vector spaces.
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and, consequently,

xLvp Vke{l,...,N} — xXLo, Yve{l,...,n},

span (U {¢k}> = span (U {(;S,,}) .

The latter together with (A.16) implies (A.14).

i.e.

Corollary A.4.3 Let ¢, ..., N, Y1, ...,y € H. Then
N N
Do) Wl = D 1) (Wl - (A.17)
k=1 k=1

holds iff there is a unitary N x N-matriz (Uj k) with'3

N
=) U, Vke{l,... N}, (A.18)
j=1

Proof: Assume that (A.17) holds and, as in the proof of Lemma A.4.2, let us choose
an orthonormal basis {¢1,...,¢,} C H and Ay,..., )\, > 0 for which (A.15) holds.
Then Lemma A.4.2 implies

o (U w) —pon | () ()

Especially, the 1x’s can be written as linear combinations

1/% = chl/ W¢V
v=1

of ¢,’s. Then we have

N n’
ZA B0 450 2 X (@) @l h il

v=1 k=1v,u=1
Since the |¢,)(¢,| form an ONS w.r.t. the HILBERT-ScuMIDT Scalar product

<A

B> 4 trace (ATB) VA, BeS(H), (A.19)

this implies

(Cky)* ol =0 Ypve{l,... .0},

] =

b
Il

1

DRAFT, June 26, 2009

13Tn general, of course, the (Ujk) are not fixed by (A.18)
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i.e. the

c, = : , ve{l...,n'},
ey’

form an orthonormal system in CV . Extending this to an orthonormal basis of C
we get a unitary N x N-matrix (ck") with

N
vr=>_ ¢’ VAo, Yhe{l,...,N}, (A.20)
v=1
where
Ay def forv>n'.

Similarly, we get a unitary N x N-matrix (C;CV) with

N
Y=Y "V \eé, VEe{l,...,N}
v=1

and hence
N

Y0ege => (") W Yve{l,...,N}. (A.21)

=1

Combining (A.20) with (A.21) we get (A.18) for the unitary matrix with components
N
UL E ek (47 Yhie{l,...,N}.
v=1

Conversely, (A.17) follows from (A.18) by straightforward calculation.

A.4.2 Qubits

Qubits are 2-dimensional quantum systems for which some orthonormal computa-
tional basis {|0),|1)} of their state space H is chosen. According to the standard

convention
Q
b = (ﬁ) w.r.t. (|0>>|1>> Va,8€C
&Ly =al0) + 8|1
we have

All A € £(H) may be identified with their matrix A Ar
Agp Ag

) w.r.t. the compu-

tational basis:

¢:(g> . ,aw:(j; j) (g) wat. (10).11))
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Here an orthonormal basis w.r.t. the scalar product (A.19) is {7°/v/2,...,7%/v/2},
where

o (1 0\ 4 (0 1\ o [0 =i\ o (1 0
7 _<O 1) 7 —(1 O) 7 _<i O) 7 —<0 _1) (A.22)

are the well-known PAULI matrices. Therefore we have

especially

where the vector!*
def N
p = trace(pT)
fulfills'®
bl <1, pP=p < |p|=1.

Note that the components of p are just expectation values of observables which are
sufficient for quantum state tomography.

Remark: Since
(eﬂ,ap : 72) X9, = X09,p
holds for

. e 3
ot sin ¢ cos ¢ at | € "% cos 1
ey, = sin ¥ sin @ y Xde = 9 ,

L.
cos ¥ e 7 gin T

every pure state corresponds to a definite spin orientation in the spin—% case — where

gi' is the spin vector observable.

A.4.3 Bipartite Systems

For j = 1,2 let { §j), cee %])} be an orthonormal basis of the state space H;

of a quantum mechanical system S;. If & and S, are distinguishable then the
bipartite system S composed of these two has the state space H = H; ® Hs with
orthonormal basis

{gb(yl)@gbg) IJE{l,m-,nl};PJE{L""HQ}}‘

DRAFT, June 26, 2009
14Usually, the vector of coherence p is called BLOCH vector when associated with electron spin

and STOKES wvector when associated with photon polarization. More generally see (Altafini. 2003).
5Note that

1
1 = trace (p) > trace (p?) = 5 (1 + |p|2) .
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Extending ® to a bilinear mapping of H; X Hs into H; ® Hs we get
L(H1 ® Hy) = span (Al ®Ay: A€ L(H.), A e E(H2)> ;
where the linear operators A, ® Ay are fixed by

(1211 X 1212) (Zb(l) X ¢(2)) o (Al ¢(1)) & (A2 1/1(2)> v (¢(1)7 1/1(2)) € Hi ®Hs.

A R (A.23)
If A; resp. A, is the pbservable of &1 resp. §7 corresponding to the physical entity Ay
resp As then A; ® A, is the observable corresponding to the physical entity A A, .

If one is only interested in the subsystem S; of the total system & in state p then
it is sufficient to know its partial state'

n2

~  def A~y def

pr = traces(p) =Y (g7
pn=1

plo) . (A.24)

since: R R R
trace (ﬁ (Al ® 1>) = trace (p1 A1) VA € L(H,).
Note that _
ig.
ppure #=  pp pure.

Example: If §; and Sy are qubit systems then for the the BELL state
_odef 1 1 0 0 1
v 5 (06) 2 (1) -(1)= ()

1.
tracez< ‘\IJ’><\II’|> =3 1,
i.e. the partial states give no information at all:
N\ g . 1
trace (|0 )(07| (je)wl) @ 1) = 5 vl vwec.

But there are strong (non-classical) correlations between the subsystems,
since

we have

_ 1

=5

(VYRYL -9 @)

DRAFT, June 26, 2009
16The so-called partial trace trace, w.r.t. the second factor is the linear mapping of L(H1®Hz2)
into £(H;) characterized by

traCGz(|¢1®¢2><¢’1®¢é|) = (W) Y)W Yr, ¢ € Ha, o, ) € Ha.
—trace (|w2><wé|)

The partial trace w.r.t. the first factor, written trace , is defined similarly.
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for all normalized ¢» € C?, where

(a> déf(_ﬁ*> for all o, € C,
B, a
and hence

trace () (0| (1) (wl) @ (1e)(@)) = 1 (6 | 6P

holds for all normalized 1, ¢ € C2.

Definition A.4.4 A state p of the bipartite system S with state space Hi ® Ho is
called separable iff there is a sequence {pn} ey of states of the form

N
pv=>_ N @ p? (A.25)

with'”

Theorem A.4.5 (Horodecki) Let S be a bipartite system with state space Hy ®
Hs . Then the separable states of S are exactly those of the form (A.25) with

N < (dim(H; ® Hy))” .
Proof: See (Horodecki, 1997). g

Lemma A.4.6 Let ¥ be a normalized vector in Hy ® Hy. Then p = |W)(V| is
separable iff
U = ¢ @ ¢@ (A.26)

holds for some normed ¢\ € Hy and ¢ € H, .

Outline of proof: Let p = p? be separable, hence of the form

N
p=Y M pN @ pP S A =1,
~ ~~ ~~ 1

>0 eS(H) €eS(H)

M=

1

v
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17"Recall (5.31) and Footnote 22 of Chapter 5.
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Then, by Lemma A .4.1,

1 = trace(p?)
N
= > A A tracesy, (A p1) trace sy, (587 p2)
v,u=1

€[0,1] €[0,1]
and, therefore,
traceHl(pA,(jl) ﬁf})) = trace 4, (P ,622)) =1 Vype{l,...,N}.

By by Lemma A.4.1, again, the latter is equivalent to the existence of normed ¢(*) €
H, and ¢(2) € Ho with

P = ‘¢<J’>><¢U>‘ Vve{l,...,N},je{1,2)

and hence (A.26).
Conversely, (A.26) together with

pO o) (60| W (1,2}

implies
0)(¥] = 50 @ 5
and hence separability of [¥)(¥|. g

181

Theorem A.4.7 Fvery vector state on H; ® Hsy allows a SCHMIDT decomposi-
tion,'® i.c. for every U € H; @ Hy there are a unique SCHMIDT number n’ € N

and orthonormal subsets {¢§1), e ,gbfll,)} resp. {gb?), o ,gbff,)} of Hi resp. Ho with

state trace o (|\IJ>(\I!|> are non-degenerated then the SCHMIDT decomposition of ¥ is

UNLQUE.

Outline of proof: Consider any ¥ € H; ® Hs. Thanks to the spectral theorem

(1) (1)
1 -

there are an orthonormal basis { s Oy } of Hy, a positive integer n’ < ny,

and s1,...,8, > 0 with
tracez(l%(%) = i (s0)° ¢5,1)><¢§,1) . s o vesal (A.28)
v=1
Then there are 1,...,1%,, € He with
U= Z ¢ @, (A.29)

v=1
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18For the generalization to n-partite systems see (Carteret et al., 2000)

U=>" s, ol @l A27
S ¢I/ ® ¢V ( )

v=1 >0
for suitable SCHMIDT coefficients si,...,S, . If the eigenvalues of the partial
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and, therefore,

ni

traceg(|\lf><‘l/|) = Z (Y | )

v,p=1

o) (o] .

The latter together with (A.28) implies

<¢M ‘ wV> = (Sl/)2 61);; VV7/J: S {1, .. ,nl} .

Thus, with
(bf/z) déf ﬂ VV€{17~~'7n,}7
S

v

(A.29) becomes equivalent to (A.27). Since, conversely, (A.27) implies (A.28) the
stated uniqueness properties are obvious. 1

Remarks:

1. Note that the BELL states (4.55) have SCHMIDT number 2 and
hence, by Lemma A.4.6, be separable.

2. The vector state

1
5(10,0) +10,1) + 1,00 + [1,1))
however, is separable since equal to (ﬁ |0>> ® (ﬁ |O)) , where

7100 (0 + ). 71 (- )

characterizes the unitary HADAMARD operator, strongly used in

quantum computing.

3. For mixed states p € S(H; ® Hz) there is a SCHMIDT-like decom-
position of the Form

TL/

5= s AV @ AP

v=1">0

with n’ < (dim H;)?, (dim Hz)? . According to (Herbut, 2002, Corol-
lary 1) the operators AD may be chosen Hermitian and such that

v# u = trace (Al(,j) A/(j)) =0.

However, in general, they cannot be positive.
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Pure states are non-separable iff their partial states are mixed.!” Therefore, the

correlations in non-separable pure states are non-classical.’’ Obviously, the partial

transpose

ni no
T)( Yo D A |95 ® 65 <¢£}3®¢,ﬁ?>

V17M1 1vg,pe=1

Z )‘1/1#11/2#2 (b(l) ® (buz ><¢(1) ® (bl(/i)‘

v2,p2=1

w.r.t. the orthonormal basis {¢§2’, o ,(b%)} of H, must be positive for separable
states:

v=1

T2
(1®%) <Z/\ PV @ pt ) Z)\ PV @(p?) >0,

Therefore, the mixed WERNER states Wy with A > 1 /3, considered at the end of
Section 4.2.1, are non-separable.?!

Lemma A.4.8 For every state p € H there is a purification in H @ H , i.e
normalized vector ¥ € 'H & H with

p = traces <|\I/><\I/|> : (A.30)

Outline of proof: Thanks to the spectral theorem there are an orthonormal basis
{ m EP} of H and Aq, ..., A > 0 with

H— - (1) (1)
> o) ol

For the normalized vector22

zn: A, =1. (A.31)
v=1

def Z J{/>¢(1) ®¢(1)

v=1

then, we get (A.30).
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9Usually, non-separable states are called entangled; see (Verstracte and Cirac, 2003), however.
20Tn a way, also the mixed non-separable states are non-classically correlated (Werner, 1989).
21 A decomposition of the 2-qubit WERNER states, taking the form (A.25) for A < 1/3, is

presented on page 6 of: http://www.physik.uni-augsburg.de/weh-school/bruss.pdf
22For the set of all suitable ¥ see (Kuah and Sudarshan, 2003, Lemma 1).
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