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Preface

Quantum field theory originally ment the theory of quantizing classical fields.
Nowadays this notion is used for the general theory of quantum systems with in-
finitly many degrees of freedom. This is a vast subject, but we can cover only
a few topics.

Warning: This manuscript is just a condensed set of notes for the
lecturer. Obviously, the explanations given here are insufficient for the
non-expert. Maybe they will be extended in the future. For the time
being these notes should be considered no more than an outline of the
stuff to be elaborated in the lectures.

Purely mathematical proofs will mainly be skipped and replaced by suitable refer-
ences.

Recommended Literature: (Araki, 1999; Baumgartel, 1995; Bogolubov et al., 1990;
Borchers, 1996; Buchholz, 1985; Fredenhagen, 1995; Haag, 1992; Horuzhy, 1990; Jost, 1965;
Streater and Wightman, 1989)
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Chapter 1

General Quantum Theory

1.1 Basic Logical Structure

1.1.1 Classical Logic and General Notions!'

Let £ be a set of propositions fulfilling
El,EQ e L — FE; /\EQ,_\El e L.

In common sense logic Fy A E5 holds if and only if both E; and Es hold while —F;
holds if and only if £} does not hold. Let us identify F; with E, whenever E; holds
if and only if Fy holds. Under these circumstances

E1 %EQ&El/\Engl (11)
defines a semi-ordering < on L, i.e. the ordinary logical implication < is

reflexive: EXFE,
transitive: X Ey, By <X B3 — E) X Ej,
anti-symmetric: FE, <X Fy,Fy x Fy— F, =E;.

The semi-ordered set (£, <) is even a lattice, i.e. for any two elements Fy, Fy € L
there is an infimum as well as a supremum, namely

El A E2 = infg {Ela EQ} y El V EQ = Sup, {El, EQ} y (12)

where E; V E5 holds iff at least one of the propositions E; , Fs holds.? This lattice
has a universal lower bound

< def .
0= inf, L
Draft, March 26, 2009
!The definitions and notions introduced here are in agreement with those of (Birkhoff, 1967)
and (Varadarajan, 2007).
2For lattices in general (1.2) serves as a definition for A and V, consistent with (1.1).




8 CHAPTER 1. GENERAL QUANTUM THEORY

as well as a universal upper bound

= sup, L.

—

The negation — is an orthocomplementation, i.e. for all £, E;, Fy € L we have

(Ol)Z E/\_|E:0,
(02)3 E\/_|E:L,
(03): —(-E)=FE,
(04) : E1 < E2 — _|E2 < _|E1 .

The orthocomplemented lattice (£, <, ) is weakly modular, i.c.:
FEix FEy=— Ey, = (Eg/\El)\/(EQ/\_'E:[)

A logic is defined to be a weakly modular orthocomplemented lattice (£, <, )
which is o-complete; i.e. in which inf, A exists for every countable subset A of £. A
logic (£, <, ) is called classical if — as in the above example — it is distributive;

ie.:?
(Dl) . E1 A (EQ V Eg) = (E1 VAN EQ) V (E1 A Eg) s

(DQ) . El V (EQ A Eg) = (El \V/ Eg) A (El V Eg) .
An ordered pair (Ey, Ey) € L x L is called compatible if*

By = (By A )V (B A —Es) . (1.3)

A probability measure on a logic (L, <, ) is defined to be a mapping w from £
into the interval [0, 1] fulfilling the following two conditions:”

(W) w(l)=1.
(Ws) : w is o -additive; i.e.:
w(sup{E; :j =1,2,...}) = > w(k;) if B; < —Ey for j # k.

1.1.2 Quantum Logic

Every known concrete quantum theory is a statistical theory of the following type.
It is affiliated with

Draft, March 26, 2009
3Thanks to orthocomplementation, (D) and (Ds) are equivalent.
4An orthocomplemented lattice (£, <, ) is weakly modular if and only if

(E1, E2) compatible <= (Es, E1) compatible

holds for all Ey, Es € £ (Birkhoff, 1967, Theorem 21, p. 53).
5Actually, one should also make sure that w(E;) = w(Es) = 1 = w(E; A E3) = 1 holds for
all El, Eye L.



1.1. BASIC LOGICAL STRUCTUR 9

1. A set Q of macroscopic prescriptions for preparing a ‘state’ of the system
under consideration.

2. A set X of macroscopic prescriptions for performing idealized simple tests
(called questions by PIRON) on the system under consideration® with only
two possible outcomes referred to as ‘yes’ or ‘no’.

3. A mapping’
w: Qx X —0,1]
with the following interpretation:®
w(S,T) is the probability” for the outcome ‘yes’ when performing

a simple ‘test’ corresponding to 7" on the system in a ‘state’ corre-
sponding to S'.

Obviously, the ‘tests’ T' € X cannot discriminate elements S7, S € Q, which are
equivalent in the following sense:

Sy~ Sy L w(S, T) = w(Ss, T)VT € X .

Similarly the ‘states” S € Q cannot discriminate ‘tests’ 11,7, € X, which are
equivalent in the sense that

Ty ~ Ty <5 w(S,T1) = w(S, Ty) VS € Q.

Therefore the appropriate mathematical formalism deals with the equivalence classes
[S] (also called states) and [T] (also called propositions or questions) together
with the (consistent) assignment

w(ﬁ) 0 w(S,T) forw=1[S], P =I[T]

rather than the specific prescriptions S,7" and the mapping w .

“What we call a state nowadays might turn out to be an equivalence class
of states at later times. But this is only possible after having discovered
new observables and new states at the same time because states and
observables must be mutually separating.” (Borchers, 1996, p. 2)

Draft, March 26, 2009

6Tn relativistic quantum field theory we cannot assume that these tests can be performed within
arbitrarily small time intervals. Therefore, as becomes evident by Theorem 1.2.2, we work in the
so-called HEISENBERG picture, in which time evolution is attributed to the ‘tests’ rather than to
the ‘states’.

"Actually — as well known for open systems (Davies, 1976) — the probability for the outcome
‘yes’ or ‘no’ in a test performed before the ‘state’ is prepared need not have any meaning. However
for all known models of closed quantum systems the ‘states’ can be imagined as having been
prepared as early as one likes. This is essential for standard scattering theory.

8We do not claim that S uniquely characterizes a microscopic state, nor do we claim that T
fixes the microscopic details of a test!

9Compare, e.g. (Peres, 1995, p. 25).
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Q and X are always (more or less implicitly) chosen such that the following three
conditions are fulfilled:'"

(I): For every P € L {[T]: T € X} there is also an element —P € £ fulfilling!!

~

w=P)=1—w(P) forallweSE{[S]: SeQ}.

(I): Let Pl, Pg, ... € L. Then there is an element I € £ such that for all w € S

w(I) =1 if and only if w(P;) =1 for j =1,2,...

(Is): Let Py, P, ... € £ be such that
wP)=1=w(P)=0 forallweS wheneverj <k.
Then there is an element S € £ fulfilling

wS) =wP)+wP)+... YweS.

Note that (I;) defines a mapping — : £ — L. Moreover, there is always a
natural semi-ordering of the elements of £ given by

P P& w(P) <w(P)VweS. (1.4)

Theorem 1.1.1 (Structure Theorem) If L # 0 and S fulfill conditions (I,)—
(I5), then (L, <,—), with < given by (1.4) and — given by (L), is a logic, i.e. a o-
complete weakly modular lattice (L, <) . Moreover, under these conditions, everyw €
S is a probability measure over (L, <, ) fulfilling the JAUCH-PIRON condition

<w<151):1:w(ﬁ2> — w<151/\152):1) VB, Pel. (15

Proof: See (Docbner and Liicke, 1991, appendix) (see also (Maczyniski, 19741)
for related results).

Draft, March 26, 2009
0T hese conditions are designed to allow for classical reasoning as far as possible. Implicit in
(Is) and (I;) is the following standardization postulate: For every P € L\ {0} there exist a state

w € S with w(P) = 1. Therefore semi-transparent windows, e.g., cannot be used for simple tests.

A more general framework, allowing for nonlinear time evolution, was suggested in
(Mielnik, 1974).



1.1. BASIC LOGICAL STRUCTUR 11

1.1.3 Quantum Reasoning

It seems natural to assign ‘actual’ properties Ep to the elements P of £ in the sense
that:

A system in the state w € § has property £/ with certainty if and

only if'? w(P) = 1. (16)

We are used giving names to these properties like ‘spin up’, ‘positive energy’ and so
on. However, there is no evidence for the assumption that under all circumstances
— independent of any test — the system has either property E; or property E_p —
even though

w(-P)=1-w(P) YweS,PecL
and even though tests corresponding to P and —P can typically be performed
jointly.'® This also becomes clear by the following lemma.

Lemma 1.1.2 (D. Pfeil) _ For every finite set L there is a classical logic (B, <5
,—g) and a mapping M : L — B for which the following holds:
For every mapping w : L — [0, 1] there is a probability measure u on (B,<p

=) fulfilling
W(P) = ,u(M(P)) VPel

and

Pt By = p(M(P)NM(P)) = u(M(P))u(M(P)) VP Pre L.

Proof: See (Liicke. 1996, Proof of Lemma 2.3).

Now we should no longer be surprised!'* if, in orthodox quantum theory, we encounter
quantum peculiarities such as'®

W(P)=17#= <w(P AP =w(P)VP e E) (1.7)
Orl(i
pl/\pgz()?&}plﬁ_\pg. (18)

Draft, March 26, 2009
12Recall Footnote 10.
13 An example for the latter is given by the STERN-GERLACH experiment, where P corresponds

to ‘spin up’ and -P to ‘spin down’.

4 According to Lemma 1.1.2, the (quantum logical) relations between (equivalence classes of)
tests may be just a consequence of the (experimental) restrictions on the set of ‘states’.

15See also (Szabo, 1996, Sect. 3.1).

6By (1.5), Py A P, = 0 means that there is no preparable property guaranteeing both E and

Ep, .
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Nevertheless, stmple quantum reasoning according to the following rules is con-
sistent:

e Choose a classical sublogic (L., <,—) of (£,<,—) and forget about all the
other elements of L.

e Then imagine that every individual — in whatever situation — has either
property Ep or E_p if P € L.

~

e For w € §, imagine that w(P) is the relative number of individuals having
property Es in an ensemble corresponding to w if P € L. .

e Imagine that

< corresponds to common sense logical implication
— corresponds to common sense logical negation,
A corresponds to common sense logical ‘and’,

V corresponds to common sense logical ‘or’.

This way all quantum peculiarities are avoided. For instance, in spite of (1.7), we

may conclude
w(P) =1 o )
: ’ ® P /\P = P ‘V/
Py compatible with P, } = WP P)=w(P) Ve

or even

f’l compatible !” with f)g
> w(Pl\/Pg):w(Pl/\ﬂP2)+w(—|P1/\P2)+w(P1/\P2)Vw

—if P, Pye L.
Simple quantum reasoning naturally leads to the notion of observable:*®

Definition 1.1.3 An observable A of a physical system modeled by the logic
(L,=<,-) is a o-morphism E4 of the BOREL ring on the real line' into (£, <,-)
which is unitary, i.e. EA(R) = 1. It is called bounded iff E4(A) =1 for suitable
compact A € R.

Draft, March 26, 2009
TFor compatible ]51, ]52 :
PIVP=(PLVE)A(-P,VE) = (PLA-P)V P,

= (Pl APV (ﬁPl AN Pg) \ (P1 A PQ)

8The BOREL ring on R' could be replaced by an arbitrary classical logic; possibly associated
with some physical dimension.

9The BOREL sets on a locally compact space X form the smallest family of sets containing all
compact subsets of X and being closed with respect to forming relative complements and countable
unions.
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The physical interpretation of E4 in the sense of quantum reasoning is as follows:

Given w € S and a BOREL subset A of R! then w(E4(A)) can be imag-
ined as the relative number of individuals, in an ensemble corresponding

to w, for which A € A.

Consequently, the expectation value? for A in an ensemble corresponding to w is
given by

Aw) = /)\duﬁ()\). (1.9)

with BOREL measure

uX(B) L (EA(B)> for BOREL subsets B C R'. (1.10)

Simple quantum reasoning can be applied to a whole family of observables Ay, As, . ..
if and only if all the pairs

(EAj(Aj),EAk(AkD SFAVRAVESE S
are compatible.?!

In order to make predictions for multiple tests one has to know how states change
as a result of a simple test. Here we assume?®?

LUDERS postulate: For every P € L there is at least one corresponding
measurement of first kind , i.e. a simple test 7' with [T] = P causing
a transition” w — w 5 whenever the result is ‘yes’. Here, if w(P) >0,
w p € S is assumed to be uniquely characterized by the condition

A

wp(P) =w(P)Jw(P) YP X P.

)

Remark: Aktual measurements of first kind can be implemented using, e.g., CNOT-
gates; see Footnote 23 of (Liicke, qip).

Draft, March 26, 2009
200f course, the expectation value may be infinite!
2n a logic (L, <, ) the sublogic generated by Py, P ,... € L is classical if and only if all the
pairs (P;, P) are compatible (Piron, 1976, §2-2).
22A first kind measurement corresponding to P does not destroy any of the properties £, with

PP compatible (Liicke, 1996). Usually, a test causes a much more drastic change of the state
or even ends by absorbing the corresponding individual. Intermediate measurements of first kind,
typically, would be approximately realized by means of highly efficient filters.

23Naively interpreted, w’ﬁ,(P’) describes the conditional probability in the state w for Ep, —
defined by (1.6) — being true provided Ep is true. In ordinary quantum theory the new statistical
operator Twﬁ is given by PT,,P/w(P).


file:qip.pdf#qip-F-nd
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By LUDERS’ postulate,? given the initial state w € &, the probability for the

homogeneous history (f’l, ..., ) —ie. for getting the answer ‘yes’ for all subse-
quent first kind measurements of a series corresponding to Py, ..., P, € £ — should
be25

W(pl)w,pl(ﬁﬁ) e 'W,ﬁl,...,ﬁn_l(pn) .

Consistent quantum reasoning with respect to histories leads to the modern notion
of decoherent histories.

Given a history (]51, e ,Isn) not corresponding to a simple test, we can no longer
be sure that there is an initial state for which (Py,..., P,) is certain, i.e., for which

W(P1>W7PI(P2> . 'w,ﬁl,...,ﬁn_1<]5") = 1. Therefore the ‘logic’ of histories is weaker
than that for simple tests and may provide a useful basis for generalizing quantum
theory (Isham, 1995).

1.1.4 Symmetries and Dynamics

Just for simplicity we always use the following assumption, fulfilled in ordinary
quantum theory:

S=38r<-) L set of all probability measures on (£, <, ). (1.11)
Draft, March 26, 2009
24In the relativistic theory LUDERS’ postulate causes interesting problems (Schlieder, 1971) (see
also (Mittelstaedt, 1983),(Mittelstaedt and Stachow, 1983)).
25Naively interpreted, w(ﬁl)wﬁl (]52) = ~w,1517___713n_1(]5n) is the probability for joint validity of
the properties Ep ..., Ep in the state w. Usually (see, e.g., (Ommnes, 1994), (Griffith, 1995)),

unfortunately, this is formulated in the SCHRODINGER picture, thus imposing unnecessary restric-
tions.



1.2. ORTHODOX QUANTUM MECHANICS 15

Definition 1.1.4 A symmetry of a physical system modeled by the logic (L, <, )
is an automorphism of (L,<,7), i.e. a bijection of L onto itself preserving the
least upper bound and the orthocomplementation. A dynamical semzi-group for
such a system s a family {O‘t}te]m of symmetries oy fulfilling the following three

conditions: %

(i) ag(P)=P VYPecL,

(11) oy, 0y = g, Vg, to ERY o {teR:t>0},

(i11) t — oy is weakly continuous, i.e., for fized Pe L andw € S the proba-

A

bility w (at(P)> is a continuous function of t € R, .

The most important symmetries are the time-translations a,,t € R, , for sys-
tems which are homogeneous in time:

Let T be a macroscopic prescription for performing a simple test corre-
sponding to P € L. Then the prescription 7; to do everything prescribed
by T just with time delay ¢ characterizes a test corresponding to oy (P) .

Then the family {at}teR+ of time-translations, determining the dynamsics of the
system, is naturally assumed to be a dynamical semi-group.

1.2 Orthodox Quantum Mechanics and Algebraic
Formulation

1.2.1 Logic and Observables

In ‘pioneer quantum mechanics’ (Primas, 1981) (without superselection rules®”) the
logic (£, <, ) described in Section 1.1.2 is realized as follows (standard quantum
logic):

Draft, March 26, 2009
If S £ S(z,<,~) one should also require o*(S) = S for the dual o of a symmetry o with
respect to S, defined by

(a*w) (P) ey (a(ﬁ)) YVweS,PeLl.

Then the inverse of a symmetry need not be a symmetry.
2TA system modeled by (£, <, ) is said to possess superselection rules if the center

Cle,<,-) def {]f’ € L: (P,P") compatible VP’ € E}

of (£, <,~) is nontrivial (£ # C # {@, i}) (L, =,7) is called érreducible if C = {0, i}.
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e L is given as the set of all projection operators® in some separable complex
Hilbert space ‘H of dimension > 2.

e For arbitrary ]51, P, € £ we have

~ def

P1<p2 p1§P2

PR <<\1/(151\11> < <qf‘151x1/> VU EH).

e For every P € H we have

PP,

Then, if dim (H) > 3, GLEASON’s theorem (CGleason, 1957) tells us that for every
w € Sz« there is a unique positive trace class operators® 1}, € £(H) fulfilling

W(P) =Tt (ﬁjz) VPecr.

Every positive trace class operator T of trace 1 can be written in the form

N~~~
v=0 ZO

T:i N Py, i)\,,zl, H>U,£0Vv.
v=0

Here we use the standard notation

~ def v v
Py <M‘@>M VYo eH, UeH\{0}.

Hence

~ def N v 5 U »
w\p(P)—Tr(Pg,P>—<m‘PM> VU eH\{0},PeL.

Now we have the following form of the LUDERS postulate:

For every P € L there is at least one corresponding measurement of first
kind, i.e. a simple test 7" with [T] = P causing a transition w — w p
whenever the result is ‘yes’, where

 PTLP
*T (PP

~

1,

Draft, March 26, 2009
Z8Their specific physical identification depends on the dynamics, as discussed in (Mielnik, 1974)
and (Liicke, 1995).
29Conversely, every trace class operator of trace 1 induces a probability measure on standard
quantum logic.
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Especially, if w = wy for some W € H\ {0}, a first kind measurement corresponding
to Py ,® € H \ {0}, causes the transition wy — we whenever the result is ‘yes”:

. P3Py P, .
w\p<P<p) >0:>%:Pq>.
Tr (PoPyly)
The corresponding transition probability is
. o | v\
o (%) = [(rarlpen) |
1[Il
Exercise 1 Prove the following:*"
PP — PHCPH, (1.12)
Pk P = P =DP, (1.13)
~PH=HePHY (T eH: (®T) =0 forall ® € PH}, (1.14)
PAPA.. Y inf{ P, P,, ...} = orthogonal projection onto ﬂ PH,  (1.15)
j=1
sup{ﬁl, by, .. .} = orthogonal projection onto span (U ]5]7'[) ) (1.16)
j=1
pl/\PQZS—lim(plpz)n'#.plpg, (117)
(pl s PQ) compatible s plPQ = pgpl , (1].8)
PlAtom g (Pl%OandpﬁpleE{O,pl})
< PyH 1-dimensional , (1.19)
]51 VAN _|p2 =0 and ]51 Atom reovering law” (Pl V _|p2) N pQ AtOIl’l, (120)
PPyP P

wy(P) >0 =

LA (1.21)
Te (PP P) T (Ppy)

Draft, March 26, 2009

30 Assuming irreducibility, atomicity and (1.20) one may prove that — apart from some exceptional
cases — (£, %, —) is isomorphic to the logic of all projection operators on some generalized HILBERT
space (Piron, 1976, Section 3-1). According to (1.21) the probability for the homogeneous history

~ ~ ~ ~ ~ N ~ ~ ~ N N N ~ 1.g.
(P, Py) is wg (P2 P Py), where 0 < PP P, < 1but P,PiP, ¢ L. Note (Davies, 1976, Lemma
2.4), however.
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Here, according to Definition 1.1.3, an observable A corresponds to a projection
valued measure, i.e. a mapping F, from the ring of BOREL sets (over R!) into £
such that:

(PVM,;): EA(RY) =1, (Normalization)
(PVMy) : Ea(UjZ, B)) = s — limya0 327, Ea(By),
whenever the B; are mutually disjoint BOREL sets.  (0-Additivity)

E, gives rise to a self-adjoint operator A, uniquely characterized by?!

_ UL
Awy) = <M‘Am> VU e D;\ {0} (1.22)

(remember (1.9)/(1.10)), where

D; = {qf : /AGRI A2 wy (EA(d/\)> < oo} (1.23)

is the domain of A (see e.g. (Achicser and Glasmann, 1965)). For this operator one
usually writes

~

A:/ AE4(dN). (1.24)

With this operator we also have

Aw) = Tr <wal> Yw € Sesy

\ (1.25)
if A is bounded

resp.

Aw) = limy, oo Tr (TWAE (0, A+])>
tlimy o T (T},AE (A 0])) Yw € Sieay

if A is unbounded, where the l.h.s. is defined iff the r.h.s is.

According to the well known spectral!/theorem (see e.g. (Reed und Simon, 1972)),
for every self-adjoint operator A there is a unique regular®? projector-valued mea-
sure 4 fulfilling (1.22)/(1.23), called the spectral!measure of A. In this sense,
according to Definition 1.1.3, the observables of orthodox quantum mechanics may
be identified with the self-adjoint operators.*?
Draft, March 26, 2009
31This is very useful for heurist}c physical identification of observables.
32 A projector-valued measure F, is called regular if

EA(B) = sup {EA(C) : BO>C compact}
= inf{EA(O) :BcCcO open}

holds for all BOREL subsets B of R (not only for B = (—o0,A], A € R!).
33We skip physical dimensions to allow for addition of these operators.
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Exercise 2 Determine the spectral measures for the following operators of elemen-
tary L?(R!, dz)-quantum mechanics:

(i)  position operator,

(ii)  linear momentum operator,

(iii) energy operator of the harmonic oscillator,
(iv) zero operator,

(v) identity operator.

Let A be a self-adjoint operator on the complex HILBERT space H with spectral
measure 4 and let f be some complex-valued BOREL function® on R'. Then
there is a unique operator f(A), written

FA) = [ 500 Ea(an), (1.26)
with domain
Dﬂm%g{we7f:/LﬂMfaw(EMdM><xw} (1.27)

fulfilling

<||‘I’”‘f |> /f w‘l'<EA(d)‘)> VU e Dy \ {0}

If f is real-valued then f(A) is self-adjoint on this domain and its spectral measure
is characterized by

Eya(J)=Ea(f(J)) for all intervals J C R. (1.28)
If f is bounded then the operator f(A) is bounded and

] < sup [FOV)] . (1.29)

AeR!

def
= sup
weH\{0}

|rd

-0
A——
I

Exercise 3 Prove the following:
fO) = foforall \ e RY = f(A)
FA) =g(A\) +h(\) forall A e R' = f(A)
FA) = gNh(N) for all A e R = f(A)

s

fol, (

g(A) +h(A),

g(Ah(A), (

g (f(A)) — h(A) if f is real-valued and g <f(>\)> h(}) for all A € RY, (1.33
(

(

|f(\)] =1 for all A € R' = f(A) unitary,
EA(B) = x5(A) for all BOREL sets B..

Draft, March 26, 2009

341f B is a BOREL subset of C then f~!(B) has to be a BOREL subset of R!.
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1.2.2 Symmetries and Dynamics

If H is a complex HILBERT space, let us denote by (L, <, ) the standard quantum
logic described in 1.2.1.

Theorem 1.2.1 (Wigner) Let H a be a compler HILBERT space of dimension
> 3. Then a map o : Ly — Ly is a symmetry of (L, <, ) iff there is either a
unitary or an anti-unitary operator U with®

a(P)=UPU* YPeLy.
Proof: See (Piron. 1976, §3-2).

For the elements of a dynamical semi-group of (L, <, =) the choice of anti-unitary
U is excluded:

Theorem 1.2.2 Let ‘H a be a compler HILBERT space of dimension > 3 and let
{Ozt}teR+ be a dynamical semi-group of (Ly,<,—). Then there is a unique self-
adjoint operator H fulfilling

A

ay(P) = erfltpewft WP ey, teR,.
Proof: See (Liicke, 1996, Sect. 3.3).

1.2.3 Algebras of Bounded Observables

Unbounded observables A have the unpleasant feature that their domain is always
smaller than H , by the HELLINGER-TOEPLITZ theorem (see (Recd und Simon, 1972,
corollary to the Closed Graph Theorem I1.12).) This causes lots of technical com-
plications. Fortunately, from the principal point of view, it is sufficient to know
the spectral operators E 4(J), which are always bounded, for all intervals J C R.
This allows for taking advantage of the powerful mathematical theory of algebras of
bounded operators.

The set £(H) of all bounded operators A in H (with D ; = H) is a complex Ba-
NACH algebra ,i.c. a complex BANACH space®® with associative®” and distributive
multiplication®® fulfilling the so-called product inequality

[AB]| < [[A[l | B]] -

Draft, March 26, 2009

3 Especially, we have a(Pgp) = Ppg -
36Tn this case the set of all bounded operators with ordinary addition, multiplication by complex
numbers, and operator norm.

37This means: A (BC’) = (AB) C for all elements A, B, C of the Algebra, and (a3)(AB) =

(a/l)(ﬁB) for all complex Numbers «, 8 and all elements A, B, C of the Algebra .
38In this case ordinary multiplication with operators and/or numbers.
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Transition to the adjoint operator is a tnvolution, i.e. a mapping A — A fulfilling
the following three conditions:

(L): ( >*=A

([2) ( ) = B*A*

(I3): (¢A+ BB)* =aA* + 3B*
)

L(H) is also a C*-algebra™, i.e. a complex BANACH algebra with involution *,

obeying the condition o X
IAAl = [|AJI*.

Exercise 4 Proof that |A*| = ||A||, hence also |AA*|| = ||A||%, holds for every
C*-algebra.

L(H) is even a VON NEUMANN algebra, i.e. a subalgebra M of L(H), H some
complex HILBERT space, that is given by the commutant

of some *-invariant subset N' C L(H) :

= (NUN*) (and hence M = M") .

Exercise 5 Let B be a set and r a binary relation on B. Show that
A C Ay = A D A}
holds for all subsets A; , A; of B, where
Ar & {B €B: (B AVAc A} VACB.
Moreover, show for symmetric r that A C A" and therefore also
AT — AT

holds for all A C B.

Another important BANACH algebra with involution is the set 7; C L(H) of
trace class operators with the norm

A = TeV A*A > || Al

Draft, March 26, 2009
39Called a completely regular algebra by NEUMARK (Neumark, 1959).
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Identifying A € £(H) with the mapping
T (TA)
we get
L(H) = T;(H)* % { linear continuous mappings 7;(H) — C} (1.36)
(see (Bratteli and Robinson, 1979, Proposition 2.4.3)). Similarly,*’ we have
Ti(H) = Ci(H)" (1.37)

((Gaal. 1973, pp 100/101)) by this identification, where C;(H) denotes the C*-sub-
algebra® of L£(H) consisting of all compact (=completely continuous) operators*
in H.

1.2.4 State Functionals

According to GLEASON’s theorem, if H is separable and of dimension > 2, ev-
ery probability measure on the standard quantum logic is the restriction (to the
projection operators) of a (unique) mapping w : L(H) — C of the form

w(A) = Te(T,A), T, c Ti(H), Te(T,) =1, T, =T >0. (1.38)

Exercise 6

(i) Given Py,..., P, € Ly and ¥ € H \ {0}, show that the probability for the

homogeneous history (Pl, e Pn) in a state prepared according to wy is
. L2
‘ P,....PU

:W(pl...pnpnfl...g)
4k

and that

R i.g.

even though P, - - - PP, P ¢ Ly.

Draft, March 26, 2009

1ONote that (1.36) resp. (1.37) is analogous to [ = (I')*, resp. ' = (co)*, where: [*® e

{bounded sequences}, Co def {null sequences}, = {absolutely convergent sequences}
41See (Gaal, 1973, Theorem 3 and Proposition 4 of Section I1.2)

42Compact operators are uniform limits of increasing countable sequences of finite rank operators
(Gaal, 1973, Theorem 7 of Section I1.2).
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(ii) Show that, contrary to Ly, the set {F € L(H): 0<F< i} of all effects

with its natural semi-ordering and ‘orthocomplementation’ is not a logic.**

The modern notion of state is as follows:** A state on a C*-algebra A with
unit is a mapping A — w(A) of A into the complex numbers fulfilling the following
three conditions for all A, B € Aand a € C:

(S1): w(A+aB)=w(A) +aw(B) (linearity)
(S) : wl)=1 (normalization)
(S3) : w(A*A) >0 (positivity™’)

Exercise 7 Show that the following three conditions are fulfilled for every state w
on a C*-algebra with unit element:

(i) |Jw(A*B)]2 < w(A*A)w(B*B)  (CAUCHY SCHWARZ inequality)
(17) w(/:l*) = w(AA) A (hermiticity)
(A) if [A— Al = 0 (continuity)

However, due to 7;(H) = C(H)*, there are also so-called singular states,® for which
w(ﬁ) = 0 whenever P has finite rank. Of course, the restrictions of such functionals
do not define probability measures on the standard quantum logic since they cannot
be o-additive. Therefore the state functionals need an additional characterization
which relies on the following.

Lemma 1.2.3 Let M be a VON NEUMANN subalgebra of L(H), let I be some

ordered index set, and let {Al} C M be an increasing net of positive operators

i€l
with supg {H/L D€ [} < 00. Thensupg ) {/L D1 € I} exists and 1s an element
of the algebra M.

Proof: See (Bratteli and Robinson, 1979, Lemma 2.4.19).

Draft, March 26, 2009
43Hint: Show that an effect F is a projection if and only if 0 = inf (efects) {F, (1- F)}
4 This way explicit use of the HILBERT space becomes unnecessary, in principle (see Sect. 1.3.3
for details).
45Tt would be quite tedious to show in general for C*-algebras that A*A = —B*B =— A*A = 0.
46Tn general, a state w on VON NEUMANN algebra is called singular, iff for every nonzero

projection operator P there is another nonzero projection operator P’ for which w(f” ) =0 and
P LP.
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Definition 1.2.4 A state w on a VON NEUMANN algebra M is said to be normal,
uf
w (supc(H) {/L RS I}) = supg {w(flz) RS I}

holds for every net fulfilling the requirements of Lemma 1.2.5.

Theorem 1.2.5 Let M be a VON NEUMANN subalgebra of L(H). Then the normal
states w on M are exactly those of the form (1.38).

Proof: See (Bratteli and Robinson, 1979, Theorem 2.4.21).

Exercise 8 Prove Theorem 1.2.5 for M = L(H), where H is separable.’”

According to Theorem 1.2.5 (and GLEASON’s theorem) the probability measures on
the standard quantum logic correspond to restrictions of normal states on £(H) to
the projection operators, if dim(H) > 2.

Definition 1.2.6 A state w on a C*-algebra A is said to be mixed, iff there are
states wy # wy on A and a real number X € (0,1) fulfilling

w(A) = My (A) + (1 = Nwa(A)  for every Ae A.

Otherwise w 1s said to be pure.

Exercise 9

(i) Show that the states wy,ws of Definition 1.2.6 must both be normal, if w is
normal.

(ii) Prove that a normal state w on £(H) is pure iff there is a normed vector §2 € H
fulfilling

W(A) = <Q ’ AQ> — Te(PoA) forall Ae L(H).

Draft, March 26, 2009

4"Hint: If {Az} is an increasing bounded net then so is {\/%AZ\/%}

el el
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1.3 Algebraic Formulation of General Quantum
Theory*®

1.3.1 Partial States

If one is interested only in a certain subset*” A of physical entities A, it is sufficient
to know the partial state w = wtotalﬂ./\/l of the proper normal state wiyia on
L(Hiota1) With respect to the smallest VON NEUMANN subalgebra M of L(Hiota1)
that contains all the projection operators £, ((—o0, A]) with A € A, A € R,

An immediate consequence of Theorem 1.2.5 is the following.

Corollary 1.3.1 Let My be a VON NEUMANN subalgebra of the VON NEUMANN
algebra My . Then the set of all normal states on My coincides with the set of all
partial states of normal states on My .

We conclude that in orthodox quantum theory the relevant states are the normal
states on the VON NEUMANN subalgebra M C L(Hota1) of interest.

Exercise 10 Show that even if wia is pure the partial state w = wiora /M may be
mixed.

From now on we consider only quantum logics (£, <, =) of the following type:*

There is a separable complex HILBERT space ‘H and a VON NEUMANN
subalgebra M of L(H) by which (£, <, ) is realized in the following
way:

Exercise 11 For bounded self-adjoint operators it is known that they commute (in
the naive sense) if and only if all their spectral projections commute® (Neumark, 1959,

Draft, March 26, 2009
48Gee (Roberts and Roepstorff, 1969).

49A typical case would be the description of extended structures via their centers of mass.
*0That the projection operators of a VON NEUMANN algebra always form a sublogic (L4, <, )

of the corresponding standard quantum logic follows from (1.17) (note P; V Py = — (ﬁﬁl A —\]52))

and Lemma 1.2.3. Necessary and sufficient conditions for a given quantum logic to be isomorphic
to a sublogic of standard quantum logic are given in (Gudder, 1979).

51For unbounded self-adjoint operators the latter is the appropriate definition for commutativity
(Reed und Simon, 1972, Sect. VIIL5).
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Theorem VII of §17.4) (or (Riesz and Sz.-Nagy, 1982, Theorem on Page 335)). Use
this to show that o R
A=A" e M= Ey(J)eM

holds for all A € £(H) and all intervals J C R.

Theorem 1.3.2 (Generalized Gleason Theorem) Let M be a VON NEUMANN
algebra with no type I, summand.”® Every finitely additive probability measure w on
Ly can be extended to a state on M. This state is normal if and only if the
corresponding probability measure is completely additive.

Proof: See (Maeda, 1989). i

We conclude® that the physically relevant states will always be the normal states
on the corresponding VON NEUMANN algebra M.

Definition 1.3.3 A x-morphism of a C*-algebra Ay into a C*-algebra Ay is a
mapping v of Ay into Ay respecting linearity, multiplication, and involution:

(M) : y(A+BB) =~(A) + 8~(B)
(M) : V(A B) =~(A)y(B)
(Ms) : Y(AT) =~(A4)

A x-morphism of a C*-algebra A, into a C*-algebra A is called a x-isomorphism
if it is a bijection (one-one and onto). A x-automorphism of a C*-algebra A is a
x-isomorphism of A onto itself.

Now Theorem 1.3.2 has the following consequence (remember Definition 1.1.4):

Corollary 1.3.4 Let M be a VON NEUMANN algebra with no type Iy summand
and let {ay},cp be a dynamical semi-group for some system modeled by (L, <, 7).
Then {au},~, is the restriction to L of a weakly* continuous™ 1-parameter semi-
group of x-automorphisms of M.

Proof: See (Liicke, 1996, Appendix A). i

Draft, March 26, 2009

92The latter means, if M is a VON NEUMANN subalgebra of £(H), that there is no projection
P € L3 onto a 2-dimensional subspace of H for which M = PL(H)P + (1— P) M (1 — P) (see
(Neumark, 1959, §38 Nr. 3 Theorem 2)).

®3Remember our assumption (1.11).

oy}, is weakly* continuous iff w (ozt(fl)) is continuous in ¢ for all normal states w and

all A e M (Bratteli and Robinson, 1979, Propositon 2.4.3).
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In the HAAG-DOPLICHER-ROBERTS theory (see (Haag, 1992)) the relevant VON
NEUMANN algebra M is to be constructed by weak closure of a suitable represen-
tation of some C*-algebra. Therefore we have to discuss the latter concept.

Definition 1.3.5 A representation of a C*-algebra A in the complex HILBERT
space H is a x-morphism 7 of A into L(H) . The representation is said to be faith-
ful iff T 1s an injection.

Theorem 1.3.6 Let v be a x-morphism of the C*-algebra A, into the C*-algebra
As. Then v(Ay) is a C*-subalgebra of Ay and:>®

HWD VAeA.

<4
As

Aq

Proof: See (Bratteli and Robinson, 1979, Lemma 2.3.1) ((Dixmier, 1969, sec-
tions 1.3.7 and 1.8.3)).

Exercise 12 Prove Theorem 1.3.6 for the case that m(A4;) is known to be a C*-
subalgebra of A, .

An immediate consequence of Theorem 1.3.6 is the following

Corollary 1.3.7 Let w be a representation of the C*-algebra A in H. Then m(A)
is a C*-subalgebra of L(H) . If the representation is faithful, then:

~

i

||, vaea
L(H) A

Warning: Even if 4 is a VON NEUMANN algebra and 7 is faithful it may
happen™ that sup {W(AZ) NS [} ¢ m(A) for some net {Ai};c; € A
of the type considered in Lemma 1.2.3. Then 7(A) is not a VON NEU-

MANN subalgebra of £(H) and 7 will not map (L 4, <, ) onto a sublogic of
(£,=,7).

Draft, March 26, 2009
%Thus application to the special case m =identity shows that the norm of a C*-algebra is
uniquely fixed by the algebraic structure.
%6 Just consider the GNS representation 7, (Theorem 1.3.8) for the mixture w of a separating
state w on L(H) (see (Bratteli and Robinson, 1979, Prop. 2.5.6)) with a non-normal state on £(H)
(recall Statement (i) of Exercise 9).
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1.3.2 GNS-Representation
Theorem 1.3.8 Let A be a C*-algebra with 1 and let w be a state on A. Then the
set of equivalence classes

(A % (A, € A, w<(211 — Ay)*(A, — A2>) —0}, A eA

with linear structure

~ A

a[A]+B[B] < [aA+ B
and inner product
(14)

is a complex pre-HILBERT space. Moreover, continuous extension of the operators

[B]> (A" B)

m.(A)[B] < [AB]

onto the completion H,, of this pre-HILBERT space’ yields a representation m, of A

in Hy, the so-called GNS-representation of A given by w. With €, o [i] we

have R
w(A) = <Qw

mo(A) Qw> VAeA

and the vector Q,, is cyclic with respect to ,(A) ; i.e. m,(A)Q, =H, .

Exercise 13 Prove Theorem 1.3.8.%%

Theorem 1.3.9 Letw be a normal state on the VON NEUMANN algebra M. Then
the GNS-representation m, is normal, i.e.

2175)) {mu(fll) c 1€ I} = T, (s;\l/lp {/Alz i€ I})

holds™ for every increasing uniformly bounded net {A;}ic; € M . Moreover, m,(M)
is a VON NEUMANN subalgebra of L(H,,) .

Proof: See (Bratteli and Robinson, 1979, Theorem 2.4.24).

Draft, March 26, 2009

STFor general *-algebras this extension should be skipped; see also (Antoine and Ota, 1989).
8Hint: First of all show, using SCHWARZ’s inequality (statement (i) of Exercise 7), that [0]
is a left ideal of A, i.e. that [0] is a linear subspace of A and that A[0] c [0] VA € A (see
(Bratteli and Robinson, 1979, Sect. 2.2.3)).
def

39This means, if w’ is a normal state on 7, (M) then &(A) < W’ (m,(A) is a normal state on M.
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Definition 1.3.10 Let A be a C*-algebra and let 7, m be representations of A
in Hy resp. Ha. Then o is said to be unitarily equivalent to m iff there is a
unitary mapping U of Hy onto Hs fulfilling

A

Um(A) =m(A)U VAeA.

Corollary 1.3.11 Let w be a state on the C*-algebra A with 1, let © be a rep-
resentation of A in H, and let 2 be a cyclic Vector (with respect to w(A)) fulfilling

w(A) = <Q)AQ> VAcA
Then, according to Theorem 1.3.8, w is unitarily equivalent to the GNS-representation
T -

Exercise 14 Prove Corollary 1.3.11 and show®’ that — contrary to what BRATTELI
and ROBINSON claim (Bratteli and Robinson, 1979, beginning of Section 2.4.4) —
equality of the sets of vector states belonging to the representations 7y, mo of A does
not imply unitary equivalence of 7, and m,, in general.®!

Definition 1.3.12 Let 7 be a representation in H of the C*-algebra A. Then 7 is
said to be (topologically) irreducible iff H and {0} are the only closed subspaces
of H that are mapped into themselves by all A € A .52 Otherwise 7 is said to be
reducible.

Exercise 15 Let H;, Hy be complex HILBERT spaces and let w be a pure normal
state on the voN NEUMANN subalgebra

def

MY {A1®i A eﬁ(Hl)}

of L(H; ® Hs). Show that the GNS-representation 7, of M is irreducible and
unitarily equivalent to the representation

7T(A1 ® j.) = Al \V/Al & E(Hl)

OfMiIlHl.

Draft, March 26, 2009

OTnspect the direct sums 7 & Dreram and T def @2 7 of one and the same representation
.
61Tn case both 7; and 7y are irreducible BRATTELI’s and ROBINSON’s statement is a consequence
of Corollary 1.3.11 and Theorem 1.3.13, below.

62That cyclicity does not imply irreducibility, in general, can be clearly seen by inspecting the
algebra of all functions of the position observable in the SCHRODINGER representation (compare
Section 1.3.3).
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Theorem 1.3.13 Let w be a state on the C*-algebra A with 1 and let m,, be the
corresponding GNS-representation of A in H,. Then the following four statements
are equivalent:

1. m, is irreducible.

2. w 1s pure.

3. Every ¥ € H, \ {0} is cyclic with respect to m,(A) .
4. (1,(A)) ={al: aeC}.

Proof: See (Bratteli and Robinson, 1979, Prop. 2.3.8 and Theorem 2.3.19.)

Exercise 16 Let A be a C*-algebra with 1. Prove the following three statements:%?
(i) A is the linear span of all its unitary®! elements U.

ii) Every representation of A is unitarily equivalent to a suitable direct sum o
i) E tati fAi itaril ivalent t itable direct f
either cyclic or trivial representations of A.

(iii) A cyclic representation 7 of A is unitarily equivalent to a suitable GNS-
representation iff it is nontrivial, i.e. iff w(A) # 0 for at least one A € A.

Concluding remark: Let A be a C*-algebra (with 1). Then one may
prove (Bratteli and Robinson, 1979, Lemma 2.3.23) that for every Ae AN\
{0} there is a state w on A for which w(A) # 0. Hence, if E4 denotes the
set of all states on A,

is a faithful representation of A. This shows that every C*-algebra is *-
isomorphic to a suitable C*-subalgebra of L(H), for suitable H !

Draft, March 26, 2009

63Hint for (i): First show that the formal TAYLOR expansion of B + iV/1— B? with respect
to the ‘variable’ B converges in A for self-adjoint B € A with ||B|| < 1 and the limit is unitary.
Hint for (ii): Use (i) and ZORN’s lemma.
64Here, unitarity of U means U* = U1,
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1.3.3 Canonical Quantization

In elementary quantum mechanics of n ‘l1-dimensional’ distinguishable particles
without inner degrees of freedom and without (further) constraints one uses the

state space
def

H, =

and the time-zero position operators

LAR", day, . .., dz,)

(B, 0) (21, .. 20) L 2, Uy, .. 2) (1.39)

with obvious domains.%°

Exercise 17 Let M, denote the smallest VON NEUMANN subalgebra of £L(H,,)
containing all bounded functions of every z, . Prove the following four statements:

(i) Myos is mazimally abelian, i.e. M, coincides with its commutant®

My = {B e L)+ [B.A=0¥Ae M)

pos

(ii) H, contains a dense set of vectors which are all cyclic with respect to the
identical representation of M, .

(iii) The identical representation of M, is reducible.

iv) The vON NEUMANN logic of M, does not contain any atom.
g p y

Translation of particle v at time zero by a, corresponds to a symmetry of the
time zero standard logic. The corresponding *-automorphism «,, is implemented
by the unitary operator U,(—a,) defined by

[Uu(_au)w] (:Ch CIE 7xn) déf w(xb ey Ly — Ay e 7:CTL) ’ (140)

1.e.:

o, (A) = U,(—a,) AU, (—a,) "
By Equation (1.39), the operators U, (7) for fixed v fulfill the relation

UV(Tl)UV(Tg) = Ul,<7'1 + 7'2)
Draft, March 26, 2009
65Compare Exercise 2, Statement (i), and Equation (1.23).
%First show that

[ o(x1,... ,xn)(Tw)(xl, cxp)dey L day,
= [o(@1,...,2x)(Txnm) (@1, ..., x0)P(@1, .., 2p)dey .. day,

holds for T' € Mo and ¢,v € H,, whenever suppp C M .
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and depend continuously on the parameter 7, i.e. they form a continuous 1-
parameter unitary group. Hence, by STONE’s theorem, there exist unique self-
adjoint operators py, ..., p, with

U,(7) =™ forv=1,...,n. (1.41)

D, is interpreted as time zero momentum operator for particle v . If ¢ is sufficiently
regular we have the TAYLOR expansion

V(y, .y T, x) = €y, )

which, by (1.40) and (1.41), gives

. h
(P) (1, ... x,) = ;8xy¢(x1> Cey Ty (1.42)
This, finally, yields the canonical commutation relations
A A _h o
[13"’ %“] = ol } on a suitable domain. (1.43)
[xl/u T ] [ V?p,u]

Exercise 18 Explain why HEISENBERG’s uncertainty relations are not valid for
the angular momentum Lj and its corresponding angular variable ¢ € [0, 27) of an
ordinary quantum mechanical particle (in R?) even though their observables obey
the canonical commutation relations

A h -
[Ls, ] = —1  on some invariant dense domain.
i

In order to avoid domain problems one replaces the fundamental relations (1.43) by
the corresponding ones obeyed by the continuous 1-parameter groups (1.41) and
Vi (s) & gidus (1.44)

i.e. by the so-called WEYL relations:

A

U, (1) Vu(s) = € 7% V,(s) U, (1), (1.45)
U, (1) Un(2) = Un(ri+71) » - Vils1) Viuls2) = Vilsa + 1),
Uy (=7) = Up(1)" # 0 # Vi(=s) = Vu(s)"
Remark: (1.45) shows that

n
) i Smiht TihS"_ p
(P1y - s Prs @1y ey Ty t) — 2T ™ 21 PvT H QW:E# L (hpy,)

is a representation of the HEISENBERG group H,, , i.e. of R?"*! with multiplication

(p17apnaxla7xnat)(p€[77p;wm§_aaxn7t)
def
é (pl +p/17"'7pn +p;“$1 +x/17"'7xn+xn7t+t/+%zzzl (pl/xly_pl//xy))

(compare (Folland, 1989, Sect. 1.2)).
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Theorem 1.3.14  There is a C*-algebra AB unique up to *-isometry, that is gen-

n 7’

erated by elements U,(1), V,(s) (v,p € {1,...,n}; 7,5 € R) fulfilling the WEYL
relations.

Proof: See (Bratteli and Robinson, 1981, Theorem 5.2.8).

The representation of the so-called CCR-algebra AP given by the C*-subalgebra
of £L(H,) generated by all U, (1) and Vu(s) defined above is called the SCHRODINGER
representation . From now on, let us identify AP with its SCHRODINGER repre-
sentation.

Exercise 19 Prove®” that the SCHRODINGER representation of AP is irreducible.

Every state w on AP is uniquely fixed by® its generating functional

A A

Bz, on) & w (Wl(zl) . Wn(zn)> , (1.46)

def 7 T\ >

where: W, (s +ir) = Uy(a) V.(s) V(%) .

If one takes for w the so-called FOCk ground state®

WF(A) o <QF ‘ AQF> , where: Qp(zy,...,2,) = ah e sl ad) :

one gets the so-called FOCK functional

def .
Ep(s1,715...) = Eo.(s1+im;...),

which uniquely characterizes the so-called FOCK representation, i.e. the GNS-

representation mg o T - According to Exercise 19 and Corollary 1.3.11 the Fock
representation is unitary equivalent to the SCHRODINGER representation.

Exercise 20 Show that™

1
Eip(s1,71; 3 80y Tn) = €XP <—;l(s% st TS)) .

Draft, March 26, 2009
67Recall Statement (i) of Exercise 17 and Theorem 1.3.13.
%8Recall (1.45) and Exercise 13.
69The ground state of n independent harmonic oscillators with mass and circular frequency equal
to 1.
"Recall (1.40) and note that fj:j e~ (#+20)” dg = /7 for arbitrary complex zq .
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Definition 1.3.15 A representation © of AB is called regular if the 7 (U,,(T))

T (V,AT)) depend strongly continuously on the parameter T and coincide with the

unit operator for Tt = 0.

Obviously, the FOCK representation of AP is regular.

Theorem 1.3.16 (STONE - VON NEUMANN) Let 7 be a regular’ representation
of AB (with finite n) in H. Then 7 is unitarily equivalent to some direct sum of
Fock representations (resp. SCHRODINGER representations) of A .

Proof: See (Bratteli and Robinson, 1981, Corollary 5.2.15) or (Folland, 1989,
pp 35-36). i

Exercise 21 Using the results of Exercise 20, prove Theorem 1.3.16.7

Let M denote the vON NEUMANN subalgebra of £(Ht) generated by those non-
relativistic n-particle observables which refer only to the motion of identifiable
particles with respect to one space dimension but not to inner degrees of freedom.
If — as usual — we assume M to be *-isomorphic to £ (L*(R**, dxy, ..., dz,)), inter-
preting (1.41) and (1.44) in the standard way (compare Exercise 15), we see from
Theorem 1.3.16:

The partial states of physically realizable ensembles of the kind described
above correspond to regular states™ w on the C*-algebra AE characterized
by the canonical commutation relations in WEYL form. Here the self-adjoint
elements of AP may be interpreted as time-zero observables (‘quantum kine-
matics’) in accord with 1.41, 1.44, and 1.45. Time evolution in the sense of
Section 1.1.4 has to be unitary, according to Theorem 1.1.4.

In this sense replacement of the complex numbers (c-numbers) p,, ¢, by operators
Dy, ¢ (g-mumbers) fulfilling the commutation Relations (1.43) (as a consequence of
(1.45)) is called a quantization of the system described above.

Draft, March 26, 2009
"'For the classification of strongly measurable (not necessarily regular) representations in non-

separable HILBERT spaces see (Cavallaro et al.; 1998).
"2Show, first of all, that

q &f limg 7 (ﬁ </ ds eff/u(s)> (/ dr 6(67)2@(7))) ¥

v=1

is normalized for suitable ¢ and that the generating functional E,, , corresponding to the vector

state
~\ def

w(A) <Q‘7r(/1)ﬂ> VAe AR,
coincides with the Fock functional.
"Le. m, is regular.
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For infinitely many degrees of freedom (n — o0) the situation is much more
complicated:

Let {U;};ez, be complete orthonormal system of H; = L*(R',dz) with ¥, =
Qp(x1) and consider

{(\Iljm\lj '7\P07‘P07"

J2o e '>}j1,j2,...eZ+

as a complete orthonormal system of a complex HILBERT space (@) -, Hl)Q%Q , Where

O o (W, Yo, ...), called an infinite tensor product of H; with itself. Then,

given n , the definition

T def 2
Wn(LLV(Z))(\I/jI, ey \I/jy, .. ) = (\I/jl, ey LL1<Z)\I/]'V, .. ) s
B
eAD

for v = 1,...,n and complex z (compare (1.46)), fixes a representation m, of AP
that is unitary equivalent to the corresponding SCHRODINGER representation.

The C*-subalgebra A2 of AB of £ ((@Zil H1)9?> generated by |J77, 7. (AP)
is called the CCR-algebra. 1t is considered to be the algebra of time zero ob-

servables of a BOSE system with ‘infinitely many degrees of freedom’ (see also
(Yurtsever, 1994) and (Borchers, 1996, Sect. 1.2)). Because of

7 (AB) C Ty (AD1)

the WEYL relations 1.45 hold also for
USO(T) =T, (ﬁy(7)> VVOO(S) =T, (Vy(s)> ,

where U, (7),V,(s) € A%,

instead of U,(7),V,(s) for arbitrary v, € N.
The regular state wp on the C'C'R-algebra with generating functional

Bz, 2,0,0,) & (0 Wi (20), . Wi () OF)

(compare (1.46)) is called the FOCK vacuum. The corresponding G N S-representation
Tp = T, is called the FOCK representation of A2 .

Exercise 22 Show that the identical representation of A2 is unitary equivalent to
the FOCK representation and irreducible.
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1.3.4 Spontaneously Broken Symmetries

Let Ul, Us, ... be unitary operators in H; and define
Q?\?déf(Ul\Ijo,...,UN\D[),\IJ(),\D[),...) fOI'Nzl,Q,....

Then, for finite N, the GN S-representation 7, of A2 for the vector state
o\ def 0ol AAoo
wn(A) & (5] Ao )

is unitary equivalent to the FOCK representation. In the limit N — oo, however, we
get a state wy, the GN S-representation 7, of which is regular, irreducible, and
faithful™ but, in general,” not unitary equivalent to the FOCK representation.

Exercise 23 Show, by Theorem 1.3.13, that the VON NEUMANN completion of
Ty, (AS) in ey, is isomorphic to the VON NEUMANN completion of mp(AL) in
H.., - Explain why, nevertheless, m,,, may be unitary inequivalent to 7y .

The above construction shows us that Theorem 1.3.16 does not hold for n = oo but
that there is a myriad of — up to know unclassified — physically relevant, regular,
irreducible representations of AP which are inequivalent to the FOCK representa-
tion !

Problem: Which is the VON NEUMANN algebra M corresponding to A2
in the sense of Section 1.3.1 and how is A2 embedded into M ?

As already pointed out, one does not always know the VON NEUMANN algebra
M of the considered partial theory in the sense of Section 1.3.1, but only — up to
C*-algebra isometry — a C*-subalgebra A of M generating M.

This is the reason for using also C*-algebras which are not VON NEUMANN
algebras, in quantum statistical mechanics and relativistic quantum field
theory.

Regarding the physical relevance of states™ we then need suitable criteria (such as
regularity of states over AY).

Draft, March 26, 2009
"Limit states of a similar kind play an important role in statistical quantum mechanics

(Araki and Woods, 1963) and constructive quantum field theory (Wightman, 1967).
>One may prove that

00 QF o
((I)l,(bg,...)e <®H1> <:>Z|1_<\IIO|¢V>‘<OO
v=1

v=1

76The main problem is to characterize those those partial states on A which are restrictions of
normal states on M.
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Definition 1.3.17 A state w on the C*-algebra A is called normal™" with re-
spect to the representation © on A in H, if there is an operator T, € T;(H)
with

~

w(A) = Tr (T},W(A)> VA e A.

The set of all states which are normal with respect to m s called the folium S,
corresponding to T .

Definition 1.3.18 Two representations i, m of a C*-algebra A are called quast
equivalent if their folia coincide, i.e. if Sy, = Sy, .

Theorem 1.3.19 Let my, ™, be non-degenerate (i.e. mj(A)V = {0} = ¥ =0)
representations of the C*-algebra A. Then 7y, 7o are quasi equivalent if and only if
a suitable direct sum of my is unitary equivalent to a suitable sum of o .

Proof: See (Bratteli and Robinson. 1981, Theorem 2.4.26).

Definition 1.3.20 A physical symmetry corresponding to the x-automorphism (or
x-anti-automorphism) ¢ of the C*-algebra A is said to be spontaneously broken
by the state w on A if the GN S-representations corresponding to w and p,w are not
quasi-equivalent, i.e. if Sy, # Sx,.., -

Exercise 24 Let A be a C*-subalgebra of L(H) and let U be an anti-unitary op-
erator on H .

(i) Show that
VA L UA T for Ac A

defines a x-antiautomorphism, i.e. for all /Al, BeAandall z € C:

(A1) = (A +2B) =4(A) + z7(B),
(A2) V(AB) =v(B)y(4),
(43) V(A7) = ~v(A)

(ii) Show that 7, as defined above, is the only *-antiautomorphism of A into £L(H)
with R o X
v(P)=UPU* VPeLy.

Draft, March 26, 2009
""In view of Theorem 1.2.5
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Exercise 25 Show that symmetries may be broken by regular states on A2 but
not by regular states on A%, N < oo.

Remarks:

(i) In physically relevant theories (like QFED) the symmetries corresponding to
homogeneous LORENTZ transformations are spontaneously broken (see e.g.
(Buchholz, 1986)).

(ii) For interesting speculations regarding spontaneous breaking of time translation
symmetry see (Rieckers, 1985).

(iii) Spontaneous breaking of gauge symmetries plays a decisive role in the WEINBERG-
SaLaM theory of electroweak interactions (see e.g. (Mohapatra, 1986) and
(Watkins, 1986)).

Exercise 26 Let w be a state and ¢ a *-automorphism of the C*-algebra A. Show™®
that the representation w of A, defined by
2\ def 1/ 1 2
w(A) = m, (gp (A)> for Ae A,

is unitary equivalent to m,,, but not necessarily to =, .

Draft, March 26, 2009

"8Hint: First, show that

U o (A) 0.0 o (071 (D) Q for A A

(consistently!) defines a unitary mapping U from He.o onto Hy, .



Chapter 2

Massive Scalar Fields

2.1 Free Neutral Scalar Fields

We are going to describe systems of noninteracting, indistinguishable,
relativistic point ‘particles’ on MINKOWSKI space! with rest mass m > 0
having no internal degrees of freedom and no charge. We use natural
units throughout, especially

c=h=1.

2.1.1 1-Particle Space
Momentum Space Representation

The three-momentum of a classical relativistic point particle is
P=myV,

where v is its (three-)velocity and

m

V1= v’

its 4nertial mass coinciding” — thanks to natural units — with its energy

pozwpd:ef \/m2—|—|p|2>0.

my —

Therefore,?

Draft, March 26, 2009
'For generalization to curved space-time see, e.g. (Verch, 1997) and references given there.
2Just compare the squares of m, and p°.

3This, obviously, is consistent with %wp(t) =v(t)- %p(t).

39
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p'/m

Figure 2.1: 1-particle mass-shell, restricted to the p®-p'-plane

Moreover, we have

def
pp=pp’—p-p=m?, p’">0 (2.1)

for its four-momentum
p= 00" p%p’) = (",p).

When changing the inertial system (but not the origin of the resp. system) p has to

be transformed by the same LORENTZ matrix as x = (2%, x):
z,p changeﬂef.syst. .T}/ _ A:I:,p’ _ Ap (22)

Exercise 27 Let {Q(s)}sEJR be some (sufficiently well behaved) curve on the 1-

particle mass shell M, < {peR*: p® =w,}. Let (p°(s),p'(s), p*(s), p°(s))
resp. (p'°(s), p' (s),p"*(s),p"(s)) be the coordinates of p(s) in the inertial System L

resp. L', related to each other by a special LORENTZ transformation:

0 1 1 0
0 P —up A P —up /2 2 /3 3

m ) p ﬁ 9 p =P, p =P
(u fixed). Show that




2.1. FREE NEUTRAL SCALAR FIELDS 41

Quantum mechanical 1-particle state space:

The pure 1-particle states are given — in the sense of orthodox quantum mechanics
— by the vectors of the separable complex HILBERT space

e d
Y 12 <R3, _P)

2wp

with inner product

(fla)y = / mm% vigeH". (2.3)
Obviously, .
(o)) )= (e (A7) (24

defines a representation of Pl (‘restricted’” POINCARE group), i.e.

A

Uo(az,AQ) Uo(al,/\l) = UO(A2a1 + a27A2A1) V(a27A2)7 (alaAl) S PJTH

d
which is (strongly) continuous. By Exercise 27 the measure 2_p is LORENTZ in-

Wp
variant. Hence the representation (2.4) is unitary, i.e.:
(Toa, )| Do, 1)) = (F13) V.5 €Y. (2:5)

It is to be interpreted as follows:

Uo(a,A) f corresponds to an ensemble that, with respect to the coordi-

nates 2/ < A=Yz — a), is to be described in exactly the same way as (2.6)
an ensemble corresponding to f is to be described with respect to the
coordinates z.

According to (2.4), with the projection-valued measure

Eo(J) f(p) & {f () if (Wp,P) € for BoREL sets J C R (2.7)

0 otherwise
we have?
Up(a) o Up(a, 1) = exp (iﬂ) = [ e Ey(dp), (2.8)
where P, & [ pEo(dp).

Draft, March 26, 2009

4As usual, Pya denotes the closure of the (essentially self-adjoint) operator Pya.
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E, is to be interpreted as the spectral measure for 4-momentum, i.e. for || f || =1:

o 5 . d
<f ‘ EO(J)f> (;7) /(wpvp)eJ ‘f(P)‘z ﬁ < (2.9)

= probability for: p € J in a state = f
Interpret.

= probability for: p € J N M, in a state = [ .

This is equivalent to interpreting By as energy-momentum operator (= observable
of 4-momentum):

(7

2 dp

v = [ il g

B expectation value for the py-component of the (2.10)
N (time-independent) 4-momentum in a state = f ’
(if || || = 1). This interpretation is also suggested by the relations
Uy(a, )T B! Uy(a, A) = A*, PY (2.11)
and X o X
s >ml, Py-Py=m?1. (2.12)
Space-Time Representation
Instead of the f (p) one may also use the corresponding wave functions®
. e d
@™ en @ [ fpye B (213)
PO=w 2pY
p
which uniquely characterize the f(p) due to
f(p) = (27r)_3/2/ eP"idy fH(z)dx Va’ e R, (2.14)
p"=wp
where
(1)30f(x)  g(x) s x) — ( ogole) ) 7o) (215)
g 0 - g 8330 axog : °

Exercise 28 Show, for sufficiently well behaved f(p), that

o
[N

e

Ju(@) = fH(@)id, f*(x)
Draft, March 26, 2009

5 Assume the f (p) to be sufficiently well behaved, for the moment.
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is a conserved LORENTZ vector field® with
. S2
/jo(ac)dX:Hf” val e R,

but that j%(z) is not nonnegative,” in general.

The f*(x) transform according to
9(p) = Uo(a, M) f(p) — g"(a) = f* (A7 (z — 0)) (2.16)

and are solutions of the KLEIN-GORDON equation
(O+m?) fH(z) =0 (2.17)

(O = (80)2—V-V). The idea is that | f*(x)|* describes at least roughly the localiza-
tion in space-time. There are fundamental obstructions® for defining a position oper-
ator in the sense of Sect. 1.2.2 (Hegerfeldt, 1974),(Hegerfeldt and Ruijsenaars, 1980).
The most natural definition” would be the one given by NEWTON and WIGNER,
according to which — in full analogy to nonrelativistic quantum mechanics — the

3-dimensional FOURIER transform of the time-dependent momentum amplitude

—iwpxo f(p>
\/ 2wp

(compare (2.9)) is interpreted as position amplitude; i.e.

e

/ | fxw.(z)]* dx = probability for “x € V at time z° in a state = 7 (2.18)
v

(if | f[] = 1), where™
; f(p)
hw.(p) = :
’ V2 v (2.19)
Inw.(2) (2m)%/2 / B fuw. (p)e ™ dp.

(2.13)
Here one easily realizes the following problem:!!

Draft, March 26, 2009

fLe: 9,y =0, fHA Y (z—a)) i3Mf+ (A ™Yz —a)) = A", 3" (A" (z —a)).
"Check 7°(0) for

)~ (3.0~ p0) — 0.0 b))

where §, is sufficiently close to the delta function and p; , ps are fixed momenta with |p1| < |p2|.
8From the relativistic point of view this is quite satisfactory (see (Crewther, 1995, Sect. 1)).
9See (Wightman, 1962) for a very detailed discussion.
10Note that || f|| = [ |fnv.w.(2)]* dx.
See Exercise 29, below. A consistent definition of strict localization for relativistic quantum
field theory was given in (IK{night, 1961) — not on the 1-particle level, of course.
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Even though — in the relativistic theory — the velocity is bounded by
|v| < 1, there can exist at most one instant of time at which the ‘particle’
is localized within a bounded space region in the sense of NEWTON and
WIGNER!

As usual, let us denote, for n € N, by S(R") the linear topological space of all
complex-valued C* functions ¢(&1,...,&,) on R™ for which all the norms

oFs i)al...(iyn
1+;€V (a& 5 ) Pl &)
def

(N € N) are finite; the sets
Uve = {p € SR") : [lolly <€}

(N € N, € > 0) forming a basis of open neighborhoods of 0, by definition.

def

lelly = sup
(£1,--En)ER

sup
Q1yen0m ) €LY
aj+...tap<N

N
(

A function f*(x) is called a positive frequency smooth KLEIN-GORDON
solution iff it is of the form (2.13) with f € S(R?). The function f~(z) is called
a negative frequency smooth KLEIN-GORDON solution iff it is the complex

conjugate of a positive frequency KLEIN-GORDON solution: f~(z) = f*(z). Finally,
the function f(x) is called a smooth KLEIN-GORDON solution iff it is of the form

fl@) = f"(x) + f(2)
with fT(x) resp. f~(x) a positive resp. negative frequency smooth KLEIN-GORDON
solution.'?

Exercise 29 Let fT be a positive frequency smooth KLEIN-GORDON solution. Us-
ing the easy part of the PALEY-WIENER theorem (see, e.g., (Garding and Lions, 1959,
Theorem 7-1.5.)), saying that the FOURIER transform of a (generalized) function
with compact support is an entire analytic function, prove the following statements:

(i) There is at most one instant of time x° for which f*(x), considered as a
function of x, vanishes outside some bounded subset of R?.

(ii) There is no instant of time x° for which both f*(z) and % ft(x) vanish
outside some bounded subset of R?.

As mentioned above, in spite of the obstructions for defining a fully satisfactory
position operator, the transformation rule (2.16) suggests that |f+(z)|* describes at
least roughly the localization in space-time for a particle with momentum amplitude
f (p). This expectation is confirmed by the following Lemma.'

Draft, March 26, 2009
12Note that this decomposition of f(x) is unique.
13A weaker version of Lemma 2.1.1 was originally proved in (Ruelle, 1962).
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supp f p

Figure 2.2: Velocity cone K; (= asymptotic localization region for f(z)), restricted
to the p’-p'-plane

Lemma 2.1.1 (Ruelle) Let f*(x) be a positive frequency smooth KLEIN-GORDON
solution. Then for every N € Z. there is a constant C' for which

(VO™ £t = 2% vt = x)]
<1+ |lz]p ¢ VmER‘l,teRl,veR?’\{ﬁ: pEsuppf} :

Proof: See (Liicke, 1974b, Appendix 2). i

Exercise 30 Proof Lemma 2.1.1 for the special case

1
v =(v,0,0),v ¢ {5— pEsuppf} , =0

p

by substitution of variables
p—EEw—py

and N-fold partial integration'® with respect to & .

2.1.2 FOCK Space

Draft, March 26, 2009

Note that dp! = 28 d¢ and rewrite differentiation with respect to ¢ as differentiation
P! (§)—vwp(e)

with respect to p' after partial integration.
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Free n-Particle System (Momentum Representation)

As in nonrelativistic quantum mechanics, n-particle states are described by functions
of n-times as many variables as in the 1-particle case. Since the particles cannot
be distinguished and have spin 0, we require these functions to be symmetric with
respect to exchange of 3-momenta:'®

‘Hg”::{ﬁxph.“,pn)e[ﬂ(R&zﬁ§§%%t>:
fn(pﬂ'la"'apﬂn) :fn(plaapn) Vﬂ-Esn} )

dp; - - - dpy

3 def 3
n | Gn) = n(P1y-- s Pn)dn (P1,-- -, Pn) ————— 2.20
Gulan) ™ [ Folor - pa)n (o P G 220)
Again, the corresponding representation
2 r def i(p1+...+pn)a f —1 —1
UO(GJA)fn (pla"-7pn) = \€ fn A pla"‘)A Pn (221)
0

Pj=ep;

of P! fulfills (2.5) (unitarity), (2.8) (4-dim. spectral representation), and (2.11)
(transformation behaviour of Fp).

Exercise 31 Determine the spectral measure Eo of PO on R (generalization of

(2.7)).

Exercise 32 Show that for every n € N and every function w on {0,1}" the
equation

Zu Z w(bl,...,bn)zz Z w(by,...,by)

v=1 " (b1,....bn)EM, p=1 (by,....bn)€{0,1}"
bu=1

holds where

Mdif{(bl,..., )e{0,1}": Zb } forv=1...,n.

If the particles could be distinguished we had

/ Fi(p b )‘2 dp; - pn probability for particle v having a
Ty oo —_— = . ~ F
o€ Bs TR 20, 2wy, 3-momentum p, € Bs in a state = f,,
Draft, March 26, 2009
5As usual, we denote by S, the group of all permutation of n elements. We
do not consider the — much more complicated — possibility of para-BOSE statis-

tics  (see e.g. (Ohnuki and Kamefuchi, 1982) and references given there;  especially
(Stolt and Taylor, 1970),(Hartle and Taylor, 1969)).
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under obvious conditions. Therefore, according to Exercise 32, (2.9) becomes

/B3n

for normalized f, € S (R*") C H(()n) ,n>0,if ao(p) denotes the linear mapping

do(p)fn

d .
}2 P _ { expectation value for the (2.92)

2wp number of particles with p € Bjs,

forn=20
N X e r n—1
(GO(P)fn) (ph e ,pn—1> = \/ﬁfn (P;pb ce ,pnfl) € Hé ) forn >0
R . \—/_/

absent for n=1

o
absent for n<1

(2.23)
from S (R*") ¢ H"” into S (R¥"=D) c HY"Y; where
def d def 7
SRY)=EH=C, (folgo)= fodo.
(2.10) becomes
S 2 dp
(oehy = [ v la@dlf
pO:"-’p
§ dp: ---d
4%m+mwmammﬂn%¢%¢.>
B expectation value for the py-component of the
N total 4-momentum in a state = f,
for normalized f, € S (R*") N H(()n) , but instead of (2.12) we have
PY>nml, Py-Py> (nm)l. (2.25)

Total State Space

If one does not want — or even cannot — fix the particle number, it is convenient to
identify H, with the so-called FOCk-space :

= O Hy"
n=0
Here the elements of H, are sequences

def {f07f17f27"'}
with f, € H(()n) forn=20,1,... and HIH < 00, where!®
13 ZED "l gu)
n=0

Draft, March 26, 2009
16To be absolutely precise, one should use different symbols for the various inner products.




48 CHAPTER 2. MASSIVE SCALAR FIELDS
The corresponding unitary representation Uo(a, A) of 791 in H, is given by'”

Uo(a, A)f © {fo;Uo(a A)f1, Uola, A)fQ,...} .

Again, (2.8) and A o
BO>0, BBy >0.

hold, while (2.22) becomes

<112 dp B expectation value for the
ao(p)f Qw - { number of particles with p € G (2.26)
for normalized f € Dy . Here, the domain Dy is defined by
Do ¥ {feHy: fueSR™) Vn, fu=0Yn>no(f)} (2.27)
and the annihilation operator (field) ao(p) by
ao(p)f < {ao(p)fi,ao(P)for...} VfeDy. (2.28)
As a consequence of (2.23) and (2.4) we thus have
A A A e
Upla, ) Yao(p)Dola, A) = etirag (A Tp)
. . _ IR (2.29)
Ula, Nao(P)Uo(a, A)F = e g (Ap)
POpr

According to (2.28), ao(p) annihilates the so-called vacuum vector o {1,0,...}
just as the energy-momentum operator does:

ao(p)Q = (i — Uy(a, A)) Qo= POy = 0. (2.30)

2.1.3 The Free Field

Creation Operators in Momentum Space
From (2.24)/(2.28) we conclude formally:

» ~ PENTES dp
= [ alerpate) o) (231)
P =Wwp p

Draft, March 26, 2009

17Similarly, to be precise, different symbols should be used for the various subrepresentations.
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Figure 2.3: Spectrum of B, ( =support of EO), restricted to the p°-p'-plane

Unfortunately, however, the adjoint ao(p)* of ao(p) does not exist for fixed p :
The restriction to Dy of the adjoint ao(x)* of

) [ ao(p)ip)dp  for ¥ € SE
is given by'®
(a0()"f), =0,
(@0(X)*f), (P1) = 2wp, X(P1) fo.

n+1
(do(X)*i)HH (P1,- - Puy1) = n(Ply-- Py Pot1)
for f € Dy ; hence, formally, by
1 n+1
(dO(p)*i)n+1 (plv"'upn+1) \/—ZQWP P — pu)fn (p17"'7 \/)"'7pn+1)

) (2.32)
for f € Dy . This means,

G0 [aexean ([ ao<p>mdp)*wo (233)

creates a particle with momentum space wave function 2w, x(p). As a simple
consequence of (2.23) we get the canonical commutation relations

—

[ao(p), do(p')]- = [&6(13%&8(1)/)]— =0,
lao(p), @3(p)] = 2w 8(p — ). (2:34)

Draft, March 26, 2009

18We write p\D< when p, has to be skipped.
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The precise meaning of (2.34) is'

[

A
[Afv

on Dy, where

f(p)

2wp

dp.

N
~
&
Q>
o
—
i
g
T
~

dp, hence A}fDO = /&S(p)

The present representation of the canonical commutation relations has the FOCK
property
A2=0 VfeSRY.

Moreover, according to (2.29) and (2.33), we have

0 A —1a% U A) = —ipa 5% A—l
0(a7 ) a()(p) 0(a7 ) € ) p | )
=p (2.35)

Uo(a, Nt (p)Uo(a, A)~! = etibpogs (A—[))

Pozwp

Expressions like
(W) | ag(p)¥a) , W1 €H, Yy € Dy,

being well-defined only when smeared by some test function y,
% . def P
[t aivs) xe) e (] 6500)

(x € S(R?), here), are called generalized functions (if linearly and continuously
depending on the test function from a suitable topological test space). This name
indicates that many operations, defined for ordinary functions, may be generalized
to these functionals:

Let K, K’ be ‘sufficiently well-behaved’ linear operators fulfilling

/ (K1) (p)¥a(p) dp = / X1(p)K'X2(p) dp (2.36)

Draft, March 26, 2009

“Note that, if { fl,}y <y 18 a complete orthonormal system in ’H(()l) , the operators

5, A;VADOJFAJEV - A}VADO—AJ;V
Y V2 o iv2
fulfill the relations (1.43) with i = 1 and that

o0

Py/\Do = <fu

v=1

Pofu) A% Ay .
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for all test functions x1, X2 . then it is natural to define, e.g.,
> . def S . R
/(KF) (p) X(p)dp = /F(p) K't(p)dp V¥ € S(R?) (2.37)

for continuous linear functionals F' on S(R?). Correspondingly, we then define

/ (Kd?)) (p)x(p)dp = / a5 (p)K'x(p) dp (2.38)

for test functions y . Generalizations of these prescriptions are obvious and will be
used without special explanation.

Exercise 33 Determine the following operations on aj(p) :

i)  partial differentiation

(

(ii)  multiplication by suitable functions

(iii) transformation of variables (e.g. POINCARE transformations)
(

iv) FOURIER transformation

Field Operators in MINKOWSKI Space

Similarly to the wave functions f(x) (see (2.13)) one defines the field operators®

= e ~ . d
Bj(e) S n) 0 [ aap)e P (239
pO=w Wp

(positive frequency part or creation part) and

b)Y (85@) e [ aepem P

U 2wp

(negative frequency part or annihilation part) on Dy, which are both solu-
tions of the KLEIN-GORDON equation?!

(O+m?) dF(x) =0 (2.41)
(in the sense of generalized functions) and, thanks to (2.29), transform according to

Up(a, N (2)Up(a, A) ™ = dF(Az 4 a) . (2.42)

Draft, March 26, 2009
20The exact definition is by multiplication with exp(—iwp2”)/2wp and subsequent 3-FOURIER
transform w.r.t. p, both in the sense of generalized functions.
2INote that, for f € Dy, <f‘ <i>0+(x)> resp. <£ ’ @a (x)> is a positive resp. negative frequency
smooth Klein Gordon solution.
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It it convenient to add both parts to get a hermitian field operator
do(2) & o () + by (2) . (2.43)

Note that it it is sufficient to smear ®(z) in the space variables, i.e.

B(%) [ Bofa) v(x) dx

is well defined for 2z € R and ¢ € S(R?).

Exercise 34 Show for arbitrary 2° € R and ¢ € S(R?) :

() v=0 = (®(a") /Dy =y(a?),

(ii) Every f € Dy is an entire analytic vector for ®,(z°), i.e.:
Sito || (u) gl <0 ¥A>0.

(ili) ®y(2°)Dy C Dy .

According to Exercise 34 and a well-known theorem by Nelson (Reed und Simon, 1972,
Sect. X.4) Cﬁw(:co) has a unique self-adjoint extension if ¢ is real-valued. By (2.42),
®(x) transforms like the observable of the field strength of some LORENTZ invariant
scalar field:

Up(a, N)o(z)Up(a, A)F = do(Az +a).

(2.42)

This suggests the interpretation

observable of the mean value [ ®q(z)1(x)dx
of the classical field** ®y(z) at time zero.

Dy(20) = { (2.44)

Since, for real-valued 1, @w(:zro) should correspond to some measurement per-
formable within supp at time 2% the condition of local commutativity*

[@g(x), é)o(y)} =0 for z Xy. (2.45)
(also called microcausality for observable fields) should be fulfilled (compare Foot-
note 29). Indeed, (2.45) is a consequence of

[#0(0) )] =it =) 2 (0] [e) )] ) (@40

Draft, March 26, 2009
22As we will learn from the HAAG-RUELLE scattering theory in Section 2.3, it is not that im-
portant to give a concrete physical interpretation for ®q(x) .

25We use o X y as a shorthand notation for (z — y)? < 0; i.e. for x being space-like to y .
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and the fact that
P’ :
A (z) = —i(27r)_3/ W5(p2 —m?)e P dp, (2.47)
p

being an odd LORENTZ invariant distribution, vanishes for z X 0 (Giittinger and Rieckers, 1968)
(see also Footnote 60).

Exercise 35 Show, for arbitrary p € S(R?), that

/ bo(z) () do = V27 (ao(G-) + a(64)) |

Pr(p) = (gzéjg)))'

(2m) ! /gp(x) et dy (FOURIER transform) .

where

pO=wp
and

P(p) =

By Exercise 35 we easily see that () is a cyclic vector for the algebra Py generated
by 1Dy and the smeared field field operators ®o(y), ¢ € S(RY), i.e.:

Po 2 is dense in Hj .

Obviously, the common domain Dy has the following invariance properties:**

®o(¢) Dy C Dy D Up(a, A)Dy (2.48)

(hence Py C Dy).

Exercise 36

(i)  Determine the observable for the particle density according to NEWTON
and WIGNER.

(i) What changes will arise for ®y(z), if one defines do(p) by (2.23)/(2.28)
using anti-symmetric f,(py,...,pn) (and a5(p) by (2.33), again)?

(iii) Determine the norm?® of @o(go)/\H(()n) as a function of n € Z .

Draft, March 26, 2009
24We even have Dy = Up(a, A) Dy .
Z>Hint: Recall Exercise 35 and study the operators considered in Footnote 19 first.
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2.2 WIGHTMAN Theory for Neutral Scalar Fields

2.2.1 WIGHTMAN Axioms

A WIGHTMAN theory of a single neutral scalar field é)(x) is characterized by
the following assumptions (WIGHTMAN azioms ):

0. Assumptions of Relativistic Quantum Theory:

The pure states are given — in the sense of orthodox quantum theory
— by the vectors ¥ of some separable,?® complex HILBERT space H on
which a (strongly) continuous, unitary representation U (a, A) of 77_1 acts
according to the following interpretation:

An ensemble corresponding to U (a, A)W¥ is to be described with
respect to the coordinates 2’ = A1 (x —a) in exactly the same
way as an ensemble corresponding to ¥ € H is to be described
with respect to the coordinates x .

This representation fulfills the following spectrum condition:

For the spectral measure E of the observable
P= / p E(dp)
of 4-momentum, uniquely characterized by?’

<\p | U(a, ]14)\1;> - /eipa <\IJ | E(dp)qf> YU e H,
we have
E(B) = 0 for all BOREL B C R*\ V.,

where
def

Vi:{xER4:xx>O,ix0>0}.

There is a normed vector €2, unique up to a phase factor, that is invariant
under the representation of 771 :

U(a,N)Q=Q VY(a,A)ePl.

This vector describes the vacuum state of the theory.

Draft, March 26, 2009
26 Actually, separability is a consequence of the separability of the test function space and cyclicity
of the vacuum state.
2"That such a projection-valued measure E on R? exists is guaranteed by the so-called SNAG
theorem (see (Streater and Wightman, 1989, p. 92) and references given there).
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I. Assumptions about the Domain and Continuity of the Field:

The field i)(x) is a hermaitian operator-valued, tempered general-
ized function with invariant domain D C 'H; i.e. a linear map-
f 528
ping .
¢ : SR — L(D,D)
o o) = [ b))

N J/

formal

for which all the
/<\If | Cj)(x)\ll> o(x)de o <\Il | Cﬁ(gp)\ll> VebD,

are continuous in ¢ € S(R*), where D has to fulfill the following
conditions for ¢ € S(R*) and (a,A) € P! :

A A

QcD, UlANDcD, deDcD, &) =) )D.

II. Transformation Law of the Field:

The field transforms according to

U(a, \)®(x)U(a, A)™ = ®(Az +a) V(a,A)ePl.

III. Local Commutativity (Microscopic Causality):

A A

The smeared fields ®(¢1), P(p2) commute whenever the supports of the
test functions ¢ , vy € S(R?) are spacelike with respect to each other.?
Formally: R R

zXy = [®(x),P(y)]- =0.

Finally, the vacuum vector §2 is required to be cyclic with respect to the algebra
Fo generated by 1D and the smeared field operators ®(p), ¢ € S(R*). This
means:

Fo () is dense in H .

Obviously, all the WIGHTMAN axioms are fulfilled for the free field ®, (x).

Draft, March 26, 2009
28 As usual, if X and Y are linear spaces, we denote by L(X,Y) the set of all linear mappings
from X into Y. We do no longer assume smearing of the field in the space variables to be sufficient.
Actually it can be shown that smearing in 2° would be sufficient (Borchers, 1964).
29That this condition has to be fulfilled in order to avoid acausal effects even at the microscopic
scale, if the field ®(z) is fully observable, is shown in (Schlicder, 1971).
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2.2.2 Remarks on the Choice of the Space of Test Functions

Originally (Wightman, 1956), WIGHTMAN used the SCHWARTZ space
D(R*) o {v € S(R*) : suppy compact}
with the usual topology:
@, — ¢ in D(R?Y) if and only if*"
D¢, (z) — D%p(z) uniformly in z € R* Vo € Z4
and if there is a compact subset K C R* outside which all the ¢, vanish.

Since the FOURIER transform @ of a test function ¢ € D(R?) is always an en-
tire analytic function, the generalized functions on D(R?*) are nonlocalizable, in
general, i.e. there is no notion of support in the ordinary sense for this class of
Distributions. In his original program (Wightman, 1956), WIGHTMAN indicated
corresponding problems by the remark:

“We shall assume that F has a FOURIER transform.”

Now, the FOURIER transform F™ of a generalized function F™ on D(R?) is al-
ways well defined on the FOURIER dual D(RY) of D(R?). What WIGHTMAN ment
was that his use of the LAPLACE transform of F™ should be justified. Using
the notion of quasi-support for nonlocalizable generalized functions, introduced in
(Biimmerstede and Liicke, 1974) (via local continuity, as explained in 3.3.3), and
the corresponding definition of LAPLACE transform, introduced in (Liicke, 1984,
Sect. 4), there is no problem at all. Another method to justify WIGHTMAN’s results
without additional assumptions was presented earlier in (Borchers, 1964, Sect. 5).

The choice of test function space may well be crucial (Wightman, 1981), since:

Nobody could construct a WIGHTMAN field (for the test space S(R?))
with nontrivial interaction.

If physical space-time R' x R? is replaced by a toy space-time R' x R? with d < 3
then the test space S(R ™) is known to be suitable.?!

E.P. Osipov (hep-th/9608115) claims to be able to construct a field ®(z) on the
physical space-time with nontrivial S-matrix fulfilling all the WIGHTMAN axioms
with S(R?) replaced by some Jajffe space** J(R*), where

DR N J(R*) is dense in  J(R*) C S(R?Y).

Draft, March 26, 2009

30We use standard multi-index notation: D¢ def (%)ao o (%)a3
31See (Streater and Wightman, 1989, Appendix) for a neat review of the construction of corre-
sponding models. For more details see (Glimm and Jaffe, 1981).

32Gee (Jaffe, 1967) for Jaffe’s class of test spaces for localizable fields.
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Examples of nonlocalizable fields are carefully studied in (Rieckers, 1971). How
the condition of microcausality has to be modified for these examples is shown in
(Liicke, 1974a).

2.2.3 Mathematical Tools
Theorem 2.2.1 (SCHWARTZ’s Nuclear Theorem) Let ny,ny € N and let
F:SR")xSR?) — C
(p1,02) — Fle1,¢2)
be linear and continuous in each argument separately. Then there is a one and only

one generalized function F(x1,x5) on S(R™ x R") with

/ Fli1,22) 1 (21)pal2) drdiry = Flgn,02) ¥ (01, 02) € SR™) x S(R™).

Proof:* See (Gelfand and Wilenkin, 1964, Chapter I §1 Nr. 2). g

Theorem 2.2.1 (together with the Hahn-Banach theorem) implies that?*
S(R™) ® S(R™) is dense in S(R™*™)  Vny, ny € N. (2.49)

Therefore the following Lemma allows iteration (Corollary 2.2.3, below) of the nu-
clear theorem.

Lemma 2.2.2 Let n € N and let {F,},., C S(R") be such that lim, ... F,(¢)
ezists for all p € S(R™). Then
F(p) = lim F,(p) for p € S(R")

V—00

defines a tempered generalized function on S(R") ; i.e. FF € S(R™).

Proof: See (Gelfand and Schilow, 1962, Ch. I 85 No. 6).

Draft, March 26, 2009
33See also (Biimmerstede and Liicke, 1974, Appendix).
34As usual, we denote by S(R™) @ S(R"2) the algebraic tensor product of S(R™) and S(R"2)
realized as the linear span of the set of all p € S(R"**"2) of the form

o(r1,22) = p1(x1)p2(22) , @; € S(R™) for j =1,2.
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Corollary 2.2.3 Let k,ny,...,nx € N and let

F:SR")x...x S(R*) — C
(P15 08) — Fle1, ..., k)

be linear and continuous in each argument separately. Then there is a one and only
one generalized function F' € S(R™ T+ with

/F(xl,...,xk)gpl(xl)---gok(xk)dxl---dxk:F(gol,...,gok)

for all (¢1,...,0k) € S(R™) x ... x S(R™).

Given n € N and ¢ € S(R*), let us define

A 1+ ... +x, def
(KA90> (%,m — T, ..., Ty —[En) = o(T1,...,2Tp)

for z1,...,2, € R*. Then K and its inverse K&l are linear continuous mappings
of S(R*") into itself with

[ (RAQO) (X, €0, En ) (X, 60, Eny) AXdE, . dEn )
= [p(ar,...,2,) ([A(glg/)) (r1,...,2p)dzy - -dz, VYV, e SR™).

Therefore, as explained in 2.1.3, KaF is well defined for tempered generalized
functions F on R*".

Lemma 2.2.4 Let n € R and let W € S(R*™)" fulfill
Wiz +a,...,xn+a)=W(xy,...,x,) VaecR.
Then there is a unique generalized function W € S(R*®™=1Y with
Wi(zy,...,xp) =W(x1 — 29, ..., Zp_1 — Ty),

1.e.:

S Wy, x,) 021, . 2y) day -+ - day
= [W(&,.. . &) (f (KA go) (a,61,. .. ,§n_1)da> &y - dé,

for all ¢ € S(R*™).
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Sketch of proof:* Let us choose some y € S(R?*) with

/X(a) da=1

and use the short-hand notation

z déf (xlv"wxn)? é d:ef (517"'a§n—1)a
Az ¥ dgy---da,, dfé ¥ odg---de, .
Then
W (%) (2) d
= [W(@)e(x1—a,...,z, —a)d
= [ (EaW) (X,€) (KM) (X — a,)dXdé
= [ ([ (BaW) (X.8) (Fag) (X — a,§dXdE) x(a) da
= [(EaW) (X,9) ([ (Kag) (X = a,8) x(a) da) dXdE
= [(KaW ) (X.€) ([ (Kap) (a,€) x(X — a)da) dXdE
= [ (KaW) (X, ([ (Kap) (a,€) x(X)da) dXdE
= [ (KaW ) (X.x00) ([ (Kap) (a:€) da) dx
and hence

WEsr o) = [ (RaW) (X6 6o x(X04X.

Theorem 2.2.5 (BOCHNER-SCHWARTZ) Let W € D(R?) be positive semi def-
wnite, i.e. fulfill

/Wx— Yo(y)dady >0 Vo € DRY).
Then there are a (unique) positive BOREL measure i on R* and some k € Z with

/ (1 + [lpl) ™ u(dp) < oo

and?°

/W(q) q)dg = /w u(dg) Vi € D(RY).

Hence W is the restriction to D(R*) of a tempered generalized function.

Draft, March 26, 2009
35The interchanges of (ordinary and/or formal) integration may be easily justified by interme-
diate regularization of the involved generalized functions. An alternative, more indirect, proof can
be found in (Streater and Wightman, 1989, p. 39/40).
360f course, D(R*) means the FOURIER dual of D(RY) :  D(R?) & {¢: pe DRY)}.
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Proof: See (Gelfand and Wilenkin, 1964, Ch. 11°83). g

Lemma 2.2.6 Letn € R* and let W € S(R™) fulfill
W(x,+a,...,2p+a)=W(xy,...,2,) VacR*
as well as

suppy C R*\ V, — /W(xl,...,quLa,...,xn—|—a)X(a)da:O

for all x € S(R*) and v =2,...,n. Then for the FOURIER transform

def —2(n— 7 1491-—T-... n—14n—1
Wit sa) 2 20) 200 [W(6s, o) 0048000
of the generalized function

W&, .. ..6n) =W +...+&-1,%+. .. +&-1,...,&-1,0)
giwen by Lemma 2.2.J we have:
suppW C Vi x -+ x V..
Sketch of proof: By Lemma 2.2.4 we have for all v € {2,... ,n}
W(xy,...,0 1 +a,...,0, +a) =W(&, ..., 6 —a,...,&_1) VYacR
and hence for all y € S(R*) with suppy C R*\ V.

0 = f (f W(ﬁl, N a,... ’gn—l) etéra1+.+&n-1qn-1) dé; - dgn—l) X(a) da
= (f W(Sh o ’gn_l) it +én-1qn-1) dé; - - dfn—l) f x(a)elqva da

= nP W, ) X))
Lemma 2.2.7 Let 1 <n €N and let W(&1, ..., & 1) € S(RM™ V) be such that
suppWCV_+x ><V_+.

Then there is one and only one holomorphic function (L’VNV> (21, 2Zn_1) ON

Tn1 dﬁf{(zl,...,zn_l) €eC:X(z)eV. forv=1,...,n—1},
fulfilling the condition®”

(W) @ im, G i) BE - Gao) Ao
= [ W(ar, ..., qnor) (M HFan=1intpo(qy o guy)) dgy - - - gy -

Draft, March 26, 2009

3"Note that

/F(Qlw'-7Qn71)§5(QI7'~-7Qn71)dq1"'danl :/ﬁ(qlwn7Qn71)(¢0(q17'~-7Qn71)dq1"'danl

for all F' € S(R*"~D) and ¢ € S(RH"—D).
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This so-called LAPLACE transform

(EW) (61 + i?h, . ’gn—l —+ inn—l)
= /W(ql, .. ’qn_l)e_i(Q1(§1+i771)+...+Qn71(§n71+inn71)) dgi - -dg,_:

formal

of W fulfills®®

hm / (LW) (51 + ’L.’I'h, e 7§n—1 + inn—l) ¢(§1, . 7571—1) d§1 s dé'n—l

V_on,.., Mn—-1—0

= f W(flv s 7571—1) ¢<§17 cee afn—l) dgl s dfn—l Vw c S(R‘l(n*l)) .
Sketch of proof: Choose some y € OOO(R‘l(n—l)) with

X(f)Z{(l) ii}

5—5’”<1forall€’ev+><...xv+
fv—g'H>2forsomeg’ev+x...xv+

and define

<£W> (El + ”717 L agnfl + i77n71)
def Ay —i % _ 1+ —
— f W(QL . 7qn_1) (6 (q1(§1+ 771)"’_ +aqn l(gn 1+2nn 1))X(q1’ . 7qn_1)l) dql P dqn_l

N

N

€S(R4(n—1))

for my, ..., M1 €V_. I

The following theorem shows that <£W> (&1 +im, ..., &noq +im,_q) is already fixed

by its (distributional) boundary values on any open subset O of R"~!.

Theorem 2.2.8 (Edge-of-the-Wedge) Let n € N, let O be an open subset of

C™ for which O L onRre # 0, let C be an open convex cone in R™ with apex at 0,

and let L be a holomorphic function on

BE R +iC)NO

such that

chmo L(z +iy) p(z)dx =0 for all ¢ € D(R™) with suppy C O.
SY—
Then

Lx+iy)=0 Vzx+iyehB.

Draft, March 26, 2009
38Compare (Liicke, 1984, Theorem 4).
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Proof: See (Streater and Wightman, 1989, Theorem 2-17). i

Corollary 2.2.9 Let1<n €N and W € S(R*"-DY . [f

suppW C Vi x ... x Vi

then either W = 0 or suppW = R* 1) |

Proof: Direct consequence of Lemma 2.2.7 and Theorem 2.2.8. i

2.2.4 Some Standard Results

By Corollary 2.2.3, for every n € N and every W € D there is a unique generalized
function

<qf | () - <i><xn)xp> e S(RI™

with

/<‘I’ | (i)<$1) : "(i)(xn)‘l’> p1(z1) - onlan) day -+ - da, = <‘I’ | ‘i)(%) : “‘i’(%)‘l’>

for all o1, ..., ¢, € S(R?). Thus, especially, the so-called n-point functions
W(z1,... o) = <Q | & (ay) - --(iJ(a:n)Q> : (2.50)

are well defined as generalized functions on S(R*"). The relativistic transformation
law for ®(z) and the invariance of the vacuum imply

/W(Axl +a,..., Az, +a)pr(z1) - on(x,) dey - - - day,
- <Q | U(a. M) (1) U(a, )"0 (a, A) - Ula, A)d () U, A)—IQ>
——

g

=1 =Q

and, by the same reasoning,

/W(wlv"'axl/—i_aa---?:Cn+a)901<x1)"'Son(xn)dxl"'dl'n
= (21 9(p1) - U(@(p2) - D))
for all (a,A) € 771 01, on € S(RY),and v = 2,...,n. By (2.49), this implies

def

Wiz, 20) S W(Aay +a,..., Az, +a) YneN, (a,A) e P! (2.51)
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and, thanks to the spectrum condition,*’
suppy C R*\ V, — /W(ml,...,x,,+a,...,xn+a)x(a)da:0.

Therefore, according to Lemma 2.2.4 and Lemma 2.2.6, for every natural number
n > 1 there is a generalized function W € S(R*"~Y) with

Wi(zy,...,xn) =W(x1 — 20, ..., Zp1 — Ty) (2.52)

and

suppW C Vi x -+ x V. (2.53)

Exercise 37 Show the following:

(i) For every ¢ € S(R*) there is a unique® operator

/&(ggl) () p(x1, .. ) day - - - day, € L(D,H)

<qf‘ ( () (2, - ) day - --dxn) \If>

—/ \Ifquxl QAD(:cn)\IJ>go(xl,...,xn)dx1~--dxn VU eD.

with

(ii) For every ¥ € D

/(i)(ml) T (i)<xn) e, ... zp) doy - - da, ¥

depends strongly continuously on ¢ € S(R*").

(iii) For all ¢1,..., ¢, € S(RY)

/ci><x1>---<i><xn>go1---sondx1---dxn — (1) D).

Draft, March 26, 2009

3Note that [ U(a)x(a)da = [ X(p) E(dp).
0Recall that <<1> | A\11> 1y <<I> iR A+ zk\11)> Vo, ¥ e D, Ae L(D,H).
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By Exercise 37, without any restriction of generality, we may assume®!

/Ci)(xl) D) (.. ay) day - - daz, D C D

and

(/(I)(.I’l) . A O () gpA(asl, ooy ) day - ~d:cn) fD (2.54)
= f O(xy) - P(xy) (Tp, ..., x1)dey - - - day,
for all n € N and all p € S(R*").

Obviously, by the GNS technique (recall Footnote 57 of Chapter 1), a WIGHTMAN
theory with D = F{) can be reconstructed from its n-point functions, up to unitary
equivalence.*?

Lemma 2.2.10 [In a field theory of the type described in 2.2.1, with dimH > 1,
the field operator ®(x) cannot be defined pointwise for x € R*.

Proof:*® Obviously, the generalized function W(¢) € S(R?)" associated with
the 2-point function is positive semi-definite. Hence, by Theorem 2.2.5, there is a
polynomially bounded positive BOREL measure p on R* with

Wz, 29) = W(z1 — 22) = /eip(ml_m2)u(dp).

By (2.51), i has to be LORENTZ covariant:**
u(B) = u(AB) VBOREL BeR* AcLl.

Let us assume that ®(z) is well defined for every 2 € R*. Then p(R*) = W(0) must
be finite. Hence there is a number py > 0 with

if 0 e B
u(B)={h U<

VBOREL B € R*.
0 else

This implies
<(i)({131)9 | (i)($2)Q> = W(l‘l,ﬂfg) = W($1 — 1'2) = Ho VZEl , L9 € R4

Draft, March 26, 2009
4Here we use

(f (1) Dan,) pi(@1, ..o 2y, ) dag - dxm) (f B(yr) - P (Yny) 021, -+ -y Yny) iy - - dynz)
= f @(xl) e (I)(xnl)q)(yl) T q)(yn2) 901(1'17 s axnl)QOQ(yla s aynz) dzy - - dxn1dy1 T dynz
of course.
42Gee (Streater and Wightman, 1989, Sect. 3-4) for full details.
43The main part of this proof, which uses neither microcausality nor the spectrum condition,
was presented in (Jaffe, 1967, Introduction).
44 As usual we denote by LL the set of all LORENTZ transformations A with (0,A) € Pl .
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even though
Hé(@@” - HU(Q;)@@)QH - H(i)(O)QH VoeR:

This, in turn, implies

A

()2 =D(0)Q VzeR?

and hence X A X
Ula, N®(z)Q = d(2)Q VY (a,A) € Pl, xR

Thanks to uniqueness of the vacuum state, therefore,
()2~ VYzeR:

By cyclicity of the €, finally, this gives dim® = 1. Since this contradicts the
assumptions of the lemma, ®(x) cannot be well defined for every x € R*. i

For the theory of a single neutral scalar field the theorem on the connection
between spin and statistics becomes especially simple:*

Theorem 2.2.11 There is no quantum field (i)(x) # 0, not necessarily fulfilling
microcausality but all the other assumptions of 2.2.1, for which

e Xy = O(z)d(y) + (y)P(z) = 0.

Sketch of proof: Thanks to (2.51) and Lemma 2.2.4 there are L!-invariant
generalized functions F'(§), G(§) € S(R*)" with

Flz—y) = (2| &)

K>
<
S~—

~_—
|
S

)

LSy
s

K>
&

~_—

and

Gz —y) = (2] D)) + (2] R)()) .
Since F is also odd, we have®®
EX0 = F(£) =0.

Now, assume local anticommutativity:

A

e Xy = O(z)d(y) + ¢(y)P(z) = 0.

Draft, March 26, 2009

45 Actually, strict local anti-commutativity is mnot mnecessary (Liicke, 1979). See also
(Guido and Longo, 1995) and (Davidson, 1997) for a purely algebraic version using strict local-
ity.

46Recall the reasoning for (2.45). For general fields one has to exploit the BHW theorem (The-
orem 2.2.19, below).
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Then, because of

A

Wi —y) = (2] b(2)d()) = - (Flz —y) + Gz — ) .

1
2
we have

EX0 = W(E) =

By (2.53) and Corollary 2.2.9, therefore, WW = 0 and hence d(p)Q2 = 0 for all
¢ € S(R*Y). By cyclicity of Q, this implies ®(z) = 0. i

Theorem 2.2.12 (Reeh-Schlieder) Let ®(z) fulfill the assumptions of 2.2.1 with
possible exception of microcausality®” and let O # () be an open subset of R*. Then

the vacuum state €2 is cyclic with respect to the algebra Fo(O) C L(D, D) generated
by 1IND and all ®(p) with p € S(RY).

Sketch of proof: By cyclicity of 2 with respect to Fy = Fo(R?) it is sufficient
to prove*®

(v db(e) - f)( Pu)2) =0 Vi1, pn € S(0) (2.55)

:><\If|d>( b(p )Q>:0 Yor,. .. on € S(RY)

forall W € D and n € N :
By appropriate transformation of coordinates we get a generalized function
L&, ..., &) € S(R™) with

L(—z1,00 — o, ..., Ty 1 — Xy) = <\Il | i)(xl) e é(mn)ﬁ>

and
suppL # R,

thanks to the assumption in (2.55). On the other hand, we have
suppL C Vi x ... x Vi,

by essentially the same reasoning as for (2.53). Therefore? Corollary 2.2.9 implies
L =0, hence the r.h.s. of (2.55).

Theorem 2.2.12 “can be interpreted as meaning that it is difficult to
isolate a system described by fields from outside effects.”
(Streater and Wightman, 1989, p. 139)

Draft, March 26, 2009
47Strict localizability is essential, however.
48 As usual, S(O) denotes the (topological) subspace of all ¢ € S(R*) with suppy C O.
49Note that translation of the FOURIER transform corresponds to multiplication of the original
function by some function with constant modulus one.
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Corollary 2.2.13 Let all the assumptions of Theorem 2.2.12 be fulfilled. Moreover,
let Ae L(D,H) commute with F(O) in the sense that™

<qf | Aé\p> - <(5*\11 | A\p> YU e D, (e FO)

and assume D C D ;.. Then

~ ~

AQ=0 = A=0.

Proof: If AQ = 0 then we have
<xp | AC*Q> - <é*xp | AQ> ~0,

for all ¥ € D and CA‘A € F(O). By the Reeh-Schlieder theorem and thanks to
D € Dj. this implies A = 0. i

Corollary 2.2.14  Let all the assumptions of Corollary 2.2.15 be fulfilled and let
A be positive in the sense that

<\11|A\11>20 YU eD.

Then
<Q|AQ>:0 — A=0.

Sketch of proof: Assume <Q ] AQ> = 0. Since A is positive, it has a positive

self-adjoint extension A (FRIEDRICHS’ theorem, see e.g. (Yosida, 1971, Ch. XI
§7)). With this extension we have

<\/§Q|\/§Q>:<Q\2}Q>:o
AQ:\/E(\/EQ) =0.

~

By Corollary 2.2.13, this implies A = 0. i

and hence

Remark: Corollary 2.2.14 shows that there cannot be any local pos-
itive energy density or positive 0-component of a local current density
with vanishing vacuum expectation value in a field theory of the type
described in 2.2.1.

Draft, March 26, 2009

50This condition is obviously fulfilled for A € Fo(Q') with @’ X O.
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Theorem 2.2.15 (Borchers) Let ®(x) fulfill the assumptions of 2.2.1 and let
U e H. Then’ A
(U(a)\D:\If VaeR4> — T ~Q.

Proof: See (Borchers, 1962, Theorem 3).

Corollary 2.2.16 Let @(x) fulfill the assumptions of 2.2.1. Then Fy is irre-
ducible in the sense that every C' € L(H) with

<\1f | C'Ci)(go)llf> — <<i><¢)*xp | cq/> YU e D, pe SRY (2.56)

must be a multiple of 1.

Sketch of proof: Let C' € £(H) fulfill (2.56). Then it is sufficient to prove
C0 = (2.57)
for some ¢ € C since the latter implies
<\1/ | OAQ> - <A*\If | CQ>

= c<\If|AQ> YU eD,AeF
(2.57)

and hence C' = ¢1, thanks to cyclicity of 2. In order to prove (2.57) it is sufficient,
by Theorem 2.2.15, to show

U(a)CQ=CQ VaeR

which, by cyclicity and translation invariance®® of ), is equivalent to
(1) Blpn)2 | U(@)CR)

being independent of a € R?* for all n € N and ¢, ..., € S(R?). The latter,

Draft, March 26, 2009
51Let 7 denote the subspace of all translational invariant vectors. Obviously, then, 7 is invariant
under PJ_ . Therefore, if we already new 7 to be finite dimensional the statement of Theorem 2.2.15

were a simple consequence of the fact that there are no non-trivial unitary representations of Ll .

»2Translation invariance of ) ensures that also <iQ | ﬁ(a)9> is a-independent.



2.2. WIGHTMAN THEORY FOR NEUTRAL SCALAR FIELDS 69

however, is an easy consequence of (2.56) and the WIGHTMAN axioms:

In the following we shall denote by F(O), O any open subset of R*, the algebra
generated by 1D and all operators A of the form

A= /Ci)(xl)..@(xn) o(z1, ... zp)day - - day,
(recall Exercise 37) with n € Nand ¢ € S(O x --- x O).

Exercise 38 Show for the free field ®(z) = Oy (), described in 2.1, that

Ae FO)

[M(on_:o} — A~1/D

holds for every bounded open set O C R*.

Lemma 2.2.17 Let all the assumption of 2.2.1 be fulfilled.”® Then

A

D(p1) - D(00)Q € E (Vi N (supp@y + ... supp@y)) H

holds for alln € N and @1, ..., ¢, € S(RY).

Sketch of proof: By

A~

O(a) = / ¢ £(dp) (2.58)

and the basic relation

ip—17p)= (27r)_4/ei(p_p,) da (2.59)

Draft, March 26, 2009

53 Actually, microcausality will not be used in the proof of Lemma 2.2.17.
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of FOURIER calculus we have

~

E(B) = (2m)™* /B ( / Ula) e da) dp VBORELB C R*. (2.60)

By the transformation behaviour of ®(z) and translation invariance of € this implies

A

E(B)®(p1) - &(00)Q2

1) ¢ |
= (2m) ™ [ D(21) - () ([ ([ or(z1 —a) - 1 (xy — a) e da) d) day - - - dz,Q
VBOREL B C R*.

Since [ ¢1(x1—a)---¢1(x, —a)e " da can only be nonzero for p € supp@; +...+
supp@, , this together with the spectrum condition implies the statement of the
lemma. I

Theorem 2.2.18 (Jost-Schroer) Let H U(a,A), 2, D and ®(x) fulfill the as-
sumptions of 2.2.1 with dim’H > 1 and let H, Uo(a,A), Qo, Dy, <i>0(x) be the
corresponding objects of the free field theory described in 2.1. If also @(m) fulfills the
free KLEIN-GORDON equation

(O+m?) d(x) =0

and if D = F(R*)Q then there are a unitary mapping V1 Ho — H and a constant
A > 0 with: . .

D=VD,, Q=VQ

(x) = ANV (2)V 1,

Ua,A) = VU(a, )V ¥ (a,A) € PL.

Sketch of proof: Assume that ®(z) fulfills the KLEIN-GORDON equation. This
implies (¢ + m?) W(§) = 0 and hence, by (2.53),
suppf/l7 Cc M, = {P eR: p’ = wp} . (2.61)

From the proof of Lemma 2.2.10 we also know that there is a positive Ll—invariant
measure p with

(21 9@dwR) =W -9 = [ Iuep)

Therefore, there must exist a A > 0 with
)\2
(2m)?

pi(dp) = 0(p°)5(p* — m?) dp.
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Without restriction of generality we may assume A = 1. Then we have™

(21 ®(@)d)Q) =i (@ —y) < (@2m)7 / 6(p")5(p* —m*)e " dp. (2.62)

The KLEIN-GORDON equation allows us to define

O® (z) ¥ (27)2 / d(p)e P dp. (2.63)

+p0>0

With this definition we have
d(z) = 0 (z) + ) (x), (2.64)

() =0, (2.65)

and hence

(21 8D(@)0N(y)a) = (2] 8 (@)D ()Q) = (2 4O (@) ()2) =0,
A A (2.66)
the latter because of ®(7)(z)* = ®(*+)(z). Moreover, by (2.62), it is clear that

(), B(y)]- = (2] [b(x), B(y)] ) 1/D (2.67)

would imply X R R
[@(2), 2(y)]- = iAn(x —y)1)D (2.68)

(recall (2.47)). Since statements corresponding to (2.63), (2.65), and (2.68) hold for
the free theory, this shows that (2.67) would imply that the n-point functions of ®(x)
are the same™ as those of ®y(z). In view of the GNS representation, described by

Theorem 1.3.8 (recall Footnote 57 of Chapter 1), therefore, it is sufficient to prove
(2.67). By Corollary 2.2.13, (2.67) follows from

[@(z), D(y)] -2~ Q. (2.69)

To prove (2.69), let us consider states of the form

U =0 ()0 (p )02, ¢ eSRY.
Draft, March 26, 2009

*Vice versa, (2.62) implies the KLEIN-GORDON equation, by Corollary 2.2.13. Therefore, as-
sumption (2.61) would have been sufficient. In this sense the results of (Baumann, 1986) are
much stronger than the Jost-Schroer theorem. For generalization in a different direction see
(Steinmann, 1982).

By (2.64) it is sufficient to check the vacuum expectation values <Q | &) () - @(”")(xn)9>
for arbitrary n € Nand o, € {+, —}. By (2.68), then, it is sufficient to check the expectation values
of the form <Q | ) (1) - ) (2, VD) (2, 1) - @(_)(mn++n7)§2> . By (2.65), however, all
of them vanish, as for the free field.
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For such ¥ Lemma 2.2.17 implies
U=F (K N (—suppci)(ﬂ — suppCi)(*))> 0
Since® - A A
V, N (—supp®™) — suppd~)) = {0} ,

this means ¥ = E({0})¥. Thus, by (2.58), ¥ is translational invariant and thus a
multiple of 2, by Borchers’ theorem. Therefore:

() () = Qo (:c)é<*>(y)9> Q
= Q| () Q>
(2.64),(2.66) | &(2)®(y)
= AT @ —y)Q.
(2.62) ! (z—y)

By (2.65), (2.64), and
Ap(z—y) = A (@ —y) = A (y — )
this implies
[@(2), b(y)]-Q = iA(z — y)Q + [ (2), & (y)] Q.
Therefore, it is sufficient to prove

Fy(e,y) & (0] [09)(2), 8 (y)] ) =0

for all ¥ € D. This, however, is guaranteed by Corollary 2.2.9 since, obviously,
suppFy # R® and suppFy C V, x V. (recall Footnote 56). i

2.2.5 PCT Theorem

The defining representation of the Lorentz group L = L(R) is well known to be
given by the real 4 x 4-matrices A fulfilling

1 0 0 O
T _deft O =1 0 O
AnA=n= 000 -1 o0 (2.70)

o o0 0 -1

Similarly, the defining representation of the complex Lorentz group L = L(C) is
given by the complex 4 x 4-matrices A fulfilling (2.70). Its subgroup

L(C) € {A € L(C): det A =+1}

is called the proper complex Lorentz group. Obviously:

Ll c L. (C)>+1,, —14. (2.71)

Draft, March 26, 2009

56By the KLEIN-GORDON equation we have supp® € M,,,U(—M,,) and hence supp®*) ¢ +M,, ,
by (2.63).



2.2. WIGHTMAN THEORY FOR NEUTRAL SCALAR FIELDS 73

Theorem 2.2.19 (BARGMANN-HALL-WIGHTMAN) Let n,N € N, n > 1, let
A — S(A) be an irreducible N x N -matriz representation ofLT+ ,and let Wy, ..., Wy
be holomorphic functions on T, with

N
Wilzt, - znm1) = 3 Su(NYW,(Azy, . Azey) Vpe{l,... N} (272)

v=1

forall (z1,...,2,-1) € T, 1 and all A € LL . Then the W, have unique single-valued
analytic continuations onto the extended tube

T ¥ (A2, .. Aza1): A€ LL(C), (21, 201) € Toin}

fulfilling (2.72) for all (z1,...,2p—1) € T, and all A € L (C), where S(A) is to be

extended to the corresponding irreducible representation of L, (C).

Proof: See (Bogush and Fedorov, 1977, Sect. 3.4). i

Corollary 2.2.20 Let all the assumptions of 2.2.1, with possible exception of mi-
crocausality, > be fulfilled and let 1 < n € N. Then the LAPLACE transform <£W>

ofW has a single valued analytic continuation onto the extended tube T, | fulfilling
the conditions

(EVNV> (A2, Azny) = (L‘VNV) (21, 2ot

(2.73)
VA€ Li(C), (21,...,201) € T,

and®

W(’¢) = f <£W> (51; cee 7£n71) 1/}(517 e 7£nfl)d£1 e dgn*l (274)
Vi € (T, NRIY).

Sketch of proof: Note, first of all, that (2.52) and (2.51) imply
W(AEL, ... Ay ) =W(E, ... 6 1) YAELL.
This together with (2.53) and Lemma 2.2.7 gives

(07\7) (E i, - Enr Hily) = (m7\7) (A Hil, - Ny i +ilyn) VA € L,

Draft, March 26, 2009
STMicrocausality would allow further holomorphic continuation when n > 2 (see, e.g.,
(Tomozawa, 1963)).
%Note that 7/_; NR*™=1 is an open subset of R*"~1) since 7,/ , is open in C*"~1)
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as an equation for holomorphic functions on 7,,_;. Therefore, by Theorem 2.2.19,
(EW) has a single valued analytic continuation onto the extended tube 7, ; ful-
filling (2.73). From Lemma 2.2.7 we also know that

V- SNyeeey Mn—1 —0

W) = lim / (ﬁW) (Etiny, o Enatinn1) (&1, §nor) A&y - dEny
for all v € S(R*™~Y | Since every Jost point®’

£, ..6, ) €T E T NRICD

has a complex open neighborhood O C 7,1, this implies

W) = [ (W) ©u@d vves(onrioD).

From this (2.74) follows by standard distribution theoretical techniques (choice of a
suitable partition of unity). i

Theorem 2.2.21 (Jost) Let 1 <n €N and (&,...,& 1) € R*™ D Then
(fl;--~7£n41) € 7271
n—1

n—1 n—1
— (ZA,,@,) (Z)\V@) <0 forall A,..., A1 =0 with >\, > 0.
v=1 v=1

v=1

Proof: See (Streater and Wightman, 1959, Theorem 2-12). g

Corollary 2.2.22 (PCT Theorem) Let all the assumptions of 2.2.1, with pos-
sible exception of microcausality, be fulfilled and let 1 < n € N. Then the PCT
condition

W(xy,...,z,) =W(=2p,...,—21) (2.75)

is equivalent to the condition of weak local commutativity

Wiz, ...,xn) =W(xp,...,x1) for(xy —x9,...,0h-1 —Tp) € Tno1.  (2.76)

Proof: By Corollary 2.2.20, since —1,; € L, (C), (2.76) is equivalent to%

Wi(zy,...,xn) =W(=xp,...,—x1) for (v —x9,..., 2y 1 — ) € Tn_1,

Draft, March 26, 2009

The elements of 7,/ _; NR* ™1 are usually called Jost points.
60Since J; = {5 eR*: ¢ X 0} , this shows once more that

<Q | [Ci)(:c),i)(y)]_§2> =0 forzXy

holds even if microcausality is not assumed, as a consequence of the other WIGHTMAN axioms.
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lLe. to
FE S W, ) = W(Ears. . 6) =0 VYEE Tu. (2.77)
By Corollary 2.2.9, since (2.53) implies
suppFCV_+X~-- XV_+,

(2.77) and hence (2.76) is equivalent to F' =0, i.e. to (2.75).

Exercise 39 Show that (2.75) is equivalent to existence of an anti-unitary Operator
0 tulfilling the conditions » R
0=1, 0Q=Q,

0 D(p)0 = (/Ci)(—x) o(z) dx)* MD Ve SRY),

and o o
0U(a)0 =U(—a) YacR*.

2.3 S-Matrix for Self-interacting Neutral Scalar
Fields

2.3.1 General Scattering Theory

The main concern of scattering theory is asymptotic (for ¢ — 400) identification of
an interacting system (IS) with a suitable “free” system (FS):

H Y set of all (pure) states of the IS |
def

Ho = set of all (pure) states of the FS .

Here, we use the HEISENBERG picture, i.e. the states describe the corresponding
system for all times until some “measurement” is taking place. Whether the consid-
ered systems are classical or quantum does not matter, so far. Thus, given ¥ € H,
the basic problem is to find the (hopefully unique) “free” states W € H, such that

for t — +o0o0 ¥ “looks like” W .

The precise meaning of the latter has to be specified by some asymptotic con-
dition (AC) as sketched in Fig. 2.4. For example, in potential scattering of
classical particles, sketched in Fig. 2.5, the Heisenberg states are given by the
solutions x(t) of the classical equations of motion and x.(¢) being free means:

x4 (t) = x4 + vit.
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final config. AC U,
b 3,
initial config. AC U

- scatt. centre

Figure 2.5: Asymptotics for a classical particle

For potentials of sufficiently short range forces the asymptotic condition is:%!

vy = tl}imoox(t) . Xy = tggloo x(t) — vyt .

U € His called a scattering state, if there are U_ € Hy and ¥, € H, fulfilling
the AS for W. Obviously, this condition need not always be fulfilled (bounded
states, particle capture etc.).

FS and AC have to meet the following requirement:

Draft, March 26, 2009
61See (Reed und Simon, 1972, Vol. III, Thm. XI.1). For the Coulomb potential the “free states”
have to be taken of the form

X:t(t) =x4 +vyt+dylnt
(see (Reed und Simon, 1972, Vol. III, Sect. 9)).
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For every &, € Hy there is exactly one ¥ € H with ¥_ = &, ; and
similarly for ‘4’ instead of ‘-’.

Then we can define the following generalized wave operators:

Vin®o ' the state W € H for which ¥_ = D, | (2.78)
‘A/out(vbo o the state U’ € H for which \TJ’JF = (iDO .

. a1
Now, the subject of scattering theory is to study the relation between W_ =V. WU
A1

and U, = Vout\if for arbitrary scattering states W .

The scattering operator in the HEISENBERG picture is

S VL f/ (2.79)
- def - X .
and maps Hous = VoutHO one-to-one onto Hi, o VinHo :
S Vot ®o = Vin®o . (2.80)
~—— ~——
looks like ¢ for t—-+oo looks like ¢ for t——o0

Definition (2.79) has the advantage of being applicable even in case Hi, ¢ Hous ,
contrary to definition (2.82) below, and of being independent of the special choice

for the realization of the free system. Its drawback is that S describes the relation

between W_ and U, only indirectly (via V out OF Vin):

out Uy

I
<>>

SV ((: vm@_:@)

2.79)

o . for scattering states U. (2.81)
SVl ( S = Svoutm) — Vb,

If Hin C Hous , this relation may be described directly via the scattering op-
erator in the interaction picture

g(] déf Voutvin 9 (2.82)
namely: )
So¥_ =1, . (2.83)

In this case, i.e. when H,, contains only scattering states (no capture),
!

S VoutSOV (2.84)
In case of weak asymptotic completeness, i.e. if Hy = 7:[0ut, we also have
A1
S VIIISOV P (285)

since then D.-1 = D.-1 . For potential scattering of classical particles the action

in out

of S and Sy is sketched in Fig. 2.6.
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Figure 2.6: Two versions of the S-matrix

2.3.2 Asymptotic condition for massive neutral scalar par-
ticles

In quantum mechanics without superselection rules, the pure states of the WS
resp. F'S are given by the 1-dimensional subspaces ¥ resp. ¥, of some complex
HILBERT space H resp. Hy :

Ho) = {¥0) = {\0): AeC}: Vg €H} -

The generalized wave operators V,,; are given by isometric (linear) mappings
(in)

> def &
Vo oo T Tl T Vo < ¢

via:

Vout\ifo déf {)\‘A/:)ut\po cAE C} for Yy € Hp .
(in) (in)

Let us consider the theory of a neutral scalar field as specified in 2.2.1, describing
the IS, and assume:

1. The restriction of the representation U(a, A) of P! to E(M,,)H is irreducible.

2. The free field theory described in 2.1.3 represents a F'S suitable for asymptotic
description of the IS.
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3. The corresponding scattering theory fulfills the condition of asymptotic com-

pleteness:
7_(in = Hout =H.

By asymptotic completeness, then, the scattering isometries ‘A/Out are even unitary
(in)
mappings from Hy onto H . The chosen FS can only be suitable if

Ula, \) V<§ = v(g Uo(a,A) ¥ (a,A) € PL. (2.86)
This implies
suppEl = suppEy = {0} U M,, U {pe R*: p? > (2m)?, p° > 0} (2.87)
and
vagmo ~E{0HH, vﬁn(” B(M,)H .
Since U (a, A ﬂE m) H is irreducible and since the vacuum state is uniquely char-

acterized by P! +—1nvar1ance, we may assume without loss of generality:

MY &MY = B0} UM N, Vo) (MY 020Y) =1 (M0 1)

(2.88)
By unitarity of Vg , then, it is sufficient to determine the vectors
(in)
. . def N N
\Il?il;g(xla s Xn) = V((Ji% (ap(X1) - - ag(Xn)2) (2.89)

(recall (2.33)) for all n > 1 and functions Y1, ..., X, € D(R?) that are nonover-
lapping, i.e.:
v # p == supp X, Nsupp X, = 0.

We want to characterize the states corresponding to vectors of the form (2.89) by
their expectation values for localized measurements corresponding to bounded ob-
servables.? The use of the field gg(:v) for this is just to associate with every open
region O C R* the corresponding algebra of local observables % A(O), i.e. the
VON NEUMANN algebra generated be all bounded observables corresponding to
measurements performable within O . Once the local algebras A(Q) are specified,
we may forget about the field qg(x) as far as the S matrix is concerned.

In order to be able to interpret the closed smeared field operators [ dz ®(z)p(x),
where p = @ € S(R?*), as observables of the p-weighted ‘field strength’ [ dz ®(z)¢(x),

let us assume that before closure the operators ®(¢) & [ dz ®(x)p(x) on D are

Draft, March 26, 2009
62A more general formalism, suitable also for nonlocalizable fields, was developed in
(Liicke, 1983).
63See (Thomas and Wichmann, 1998) and references given there for further details.
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essentially self-adjoint and that in case supp ¢; Xsupp s also the spectral pro-
jection operators of ®(p;) commute® with those of ®(py). Then, given an
open region O C R* | A(O) should be identified with the VON NEUMANN sub-
algebra of L(H) generated by all spectral operators of the selfadjoint operators

O(p), ¢ = p € S(O). This also ensures that the following four conditions are
fulfilled:®°

0, C O, = A(O)) C AO,), (2.90)
O X0y — [A(Ol),A(OQ]_ = {0}, (2.91)
Ula, N)AO)U(a, )™ = AAO +a), (2.92)

(U AWa0)) = {ri: xech. (2.93)

By RUELLE’s lemma (Lemma 2.1.1) the influence of an asymptotic particle on
measurements outside its velocity cone should fall off very rapidly. This statement
has to be made precise in order to get a suitable asymptotic condition:

Asymptotic Condition:®" Let Y, ... X, € D(R3) be nonoverlapping
and let the vectors aj(x1)Q0, ... ,a8(xn) Q20 € H(()l) be normalized. More-
over, let K = —K be a closed cone for which

[v(ﬂKxn:{O} . K d:ef{<t,£t) : tGR,p€suppxn}.
Wp

Then, for sufficiently small®® ¢ > 0 there exists a sequence of positive
numbers C7, Csy, . .. for which

|t|N ‘<\I]?_u§(5(17 cee )A(n) Atw?ug(j(la s )v(n)>
— <\If%g§(5<1, Y1) At‘lf?igg(Xu » .Xn71)>‘

< || Al Cn w(>)o, NeN, A e A(KNUp () ,
<

where:
S S {X eR: 20 =1}

Draft, March 26, 2009
64This is a stronger version of the WIGHTMAN axiom (v); for an interesting sufficient condition
see (Borchers and Zimmermann, 1964), again.
65For more general considerations concerning the connection between local algebras of bounded
operators and local WIGHTMAN fields see (Wollenberg, 1985) and (Driessler et al.. 1986b).
66Statement (2.93) is a simple consequence of Corollary 2.2.16 and the spectral theorem.
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a4

Figure 2.7: The regions (dotted) of measurement K N Uy (%), t > 0

2.3.3 Evaluation of the Asymptotic Condition

The evaluation of the asymptotic condition depends crucially on the following rep-
resentation of 1-particle states:

Definition 2.3.1 Given x € D(R?), a sequence {ét} C L(H) is called a

teR
Haag-Ruelle-Kastler sequence (HRK sequence) for

U =ai(\) eHY cH
if the following three conditions are fulfilled:
() A
i [t HBtQO . \IJH —0 VNEeN.

(ii) For every N € N there is a sequence of local operators
A e A (Um (KN zt))
N

with K X

t—=o0

Draft, March 26, 2009

67The factor |t|N with arbitrary N is appropriate for short-range forces, only. For long-range
forces there are only very limited results (Buchholz, 1977).
%The causal completion O dof {x eR*:2X Ot} of Oy = KN Uq¢)(X¢) must not intersect

Ky, -
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(ii)
lim |t~ HBt

t—+oo

=0 for sufficiently large N € N.

In order to prove existence of HRK sequences with the additional properties formu-
lated in Lemma 2.3.3, below, we need the following variant of Lemma 2.2.17:

Lemma 2.3.2 Let A € L(H) and let ¢ € S(R). Then for every BOREL B C R* :
BH = / dyc’\IIEE(VJr (B + supp@)) H,

where

A(z) o Ux)AU(x)™" forz e RY.

Sketch of proof: Let B and B be arbitrary BOREL subsets of R* and let
U € E(B)H. Then, since (2.60) implies

E(B) = (2n) 2 / U(a) Yo (—a) da.

where yp denotes the characteristic function of B :

o(x)dz W

) 5(=a) Xp(—a)p(r) dadadr ¥
( +d) (@+a)Xp(—a) Xp(—a)p(r) dadadz ¥
(z) U(a) X 5(—a) Xp(a — a)p(x — a) dadadz ¥ .

Since
/%B(—d) xs(a—a)p(x —a)da=0 for BN (B + suppp) =0,

this implies
/A(x) o(z)dz ¥ € E (B + supp@) H

and hence, by the spectrum condition, the statement of the lemma. i

Lemma 2.3.3 For every Y € D(R?) and € > 0 there is a HKR sequence {Bt}
teR
for al(X)Qo fulfilling the following two conditions:%
(i)
lim [t HB B, — <QO | B BtQO> QOH —0 VNEN,

t—+

Draft, March 26, 2009
9 Actually, by Lemma 2.3.2 and Borchers’ theorem, (i) is a consequence of (ii) for sufficiently
small € > 0.
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(ii)
BiE(BYH ¢ B(B - U, (Mg))H ¥t €R, BorsL B C R'.
where
My = {(wp,P) : P € suppx} -

Sketch of proof: Let x € D(R4) and € > 0. The essential point is to show that
there is an almost local operator A, i.e. a bounded operator A with

lim RNinf{HA—BH;BeA(UR(O))}zo VN eN,

0<R—00

for which )
fi(p) =1 Vp € suppx, (2.94)
where

fa ™ (BOMa)A)

By (2.93), {0} and H itself are the only closed subspaces of H which are invariant
with respect to™

Aioe = () A(Ur(0)) .
R<0

Therefore
AIOCQO =H

and consequently R
fi#0 for some A € A .

Moreover, from
28628y U

and (2.4) we conclude

fU(O,A)Af](O,A)*l(p> = fA (A_1p> VAe Ajoc , P € R3. (2.95)

[pO=wp

Therefore, choosing some Haar measure p on LL , we get
~ —T «
p)= [F(K7T)  dwulan).
Pozwp
for sufficiently well-behaved &, where

A; & / U(0, AYAU(0, A) " 6(A) 12 (dA) .

Draft, March 26, 2009
"0The orthogonal projection onto a nontrivial invariant subspace would commute with all ele-
ments of A, in contradiction to (2.93).
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Now, for suitable &
gy & fy, (N(m,0])
= [ 73 (N Tn.0)) daa) @)
e TR\ {0}

and therefore

fi€ C®R*\ {0} for suitable A € Ape.
By (2.4), we also have

fU(a:)AU(x)ﬂ(p) = (eipx]EA(p))‘

p0=wp
and hence
ff @) A0 (@) o) de(P) = (27)*F4(P)@(wp, P) - (2.96)
Therefore
0< fi € CPR*\ {0} for suitable almost local A .

From this, using first (2.95) and then (2.96) again, we easily get (2.94) for some
almost local A.
Note that for ¢ € S(R?) and

@ en e [ xp)erdp (2.97)
we have
ala) <[ pla=n Wy (2.98)

= @0 [ (nrEm e p)) e ap
By (2.96) this implies

ff U(z)AU ()~ 1 () dx(p) = QWP X(p)

= (a5(X)$), (P)
for all t € R if )
fa(p) =1 Vp € suppx
and
$(wp, p) = (2m) /2w, Vp € suppy. (2.99)

In other words:

There is an almost local operator A with

(2.97)(2.99) — B(M. / 0 () AU () ou () daQo = 3(¥) 0 -
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Choosing ¢ such that A
suppp Nsuppk C M, (2.100)

we even have

~

/ﬁ@mm@ﬂmmM%:%WWOVmR,
by Lemma 2.3.2. Since, obviously,

sup |f+(:c)| < 00
R4

this together with Ruelle’s Lemma (Lemma 2.1.1) shows that (2.97) — (2.100) guar-

antee {Bt o [U(x)AU(z) Yy () dx}te]R to be a HRK sequence for a§(x). In

order to fulfill also conditions (i) and (ii) of the lemma, it is sufficient — thanks to
Lemma 2.3.2; spectrum condition and Borchers’ theorem — to choose ¢ such that
also

suppp C Us (My)

holds with ¢ > 0 sufficiently small to ensure
Us (My) NUs (=My) C Un(0). g

Exercise 40 Show that the HRK sequence of Lemma 2.3.3 may be constructed in
the form

B = / B(a)ido f*(x)dx . B(x) < U) BU@)™,

with T defined by (2.97), where B is an almost local operator fulfilling
(O, +m?)B(2)Q =0

and hence

A

Be Qo= a5(000% ., Bel / B(x)id, x* (x) o, ,
>

for every (sufficiently well-behaved) spacelike hypersurface 3 (without finite bound-
ary points). Show that B may be chosen such that also

B;Bg Qg ~ QO

holds for all these surfaces.
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Theorem 2.3.4 Let Xq,...,Xn € D(R?) be nonoverlapping and let
lay(x)l =1 Ve {l,...,n}.
Then the assumptions made for the considered theory and the AB imply existence

of real numbers o with

lim |t H\DO’“%’ . Xn) — exp <z go(+)) Ao Aol =0 (2.101)

t— 4+ oo (in)

for all N € N and HRK sequences {flyvt} . for the aj(x.,) -
te

Sketch of proof: Obviously, the (2.101) holds for n = 1 with ¢ = 1. There-
fore, it is sufficient to prove the theorem for n = n’ assuming it to be valid for
n<n:

Without restriction of generality we may assume existence of some ¢ >= with

Mg, + ...+ My, — U (Myg,) ... — U (My,,) C Upn(0). (2.102)

Let us first consider HRK sequences of the type given by Lemma 2.3.3 and prove
the the lemma by induction w.r.t. n. Exploiting the AB and the definition of HRK
sequences we easily see that

li1’nt—>(—i-)oo|t|]\[ <H n/— 1tA*/ 1t\Ij(()ll§(X1 ..,)Zn/) _‘Ij?ug(X17"'7)2’rL’)
2

) =0

holds for all N € N. Since we already know that there are real ¢/, ,, ¢’ with

An’fl,tA;/_lyt\I]?%(Xl? o 7)211’*1) - ‘I]?ui);oz cee 7Xn’71)

lim [¢Y
t—>(—i—) 00

exp (z 90’+) Ao A0 = Tou (X1 1)
(=) "

= limt_,(+)oo |t|N A r_1 tA r_q t\:[Joug .. aXn’—l) \I[?u‘g(le e 7)271’—1)

‘ 0
for all N € N, we conclude:

-1 tA / 1t‘11?11r41§<X1 .. 75(%’) - \Ij(()igg()vﬁ, o 75(n’)

11mt~>(+) o] |t|N

~

= hmt—>(+)co |t|N Apa tA 1_1,t €XP (Z <,0 + > Al,t e 'An’—l,tQO - \I[((qu‘g()zla S JZn/—l)

7/904,_) Al,t ltA / 1tA ’—1,tQO_\Ij%ﬂg(j(lv"'a)v(n/—l)

= limy_ ¢ oo |t |lexp
)

= limt—>(+>oo |t|N eXp (2 ¥4 ) Al,t e 'An’—l,tQO - ‘I’?ug(f( cee 7Xn’—1)
— ) in
=0 VN eN.
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Since, obviously,

\Il?ug(j(lv"'aj(n/) :\Ij?ug(Xﬂla--wXﬂn’) VT‘_GS;

this implies

AViAZ,t\IJ?_m)J(le v 75(11’) - \IJ(()u‘g(

>«
3
3\

lim |t|N‘ 1y
t— + oo

(=)

forall v € {1,...,n'} , N € N and hence, by iteration,

t—!i-ir-noo MN ‘ Al,tjlit T An’,tAZ’,t\II?u‘g(Xla S 75(11’) - \Ij?,ugovﬁy SR aXn’) ‘ =0
=)
for all N € N. Exploiting local commutativity, once again, this gives
i Y[ e (6 ) = g )| =0
=)
(2.103)

for all N € N. Now, for the HRK sequences of the type specified in Lemma 2.3.3
we have

Ay A (X, Xor) € B (My, + ...+ My

(in) —Ue (My,) ... = U (My,,)) M,

n!

since

\Ij?ug(Xlﬁ .. 7)271/) & E (Mil 4+ ...+ M)Zn/) H.

By (2.102), the spectrum condition, and Borchers’ theorem, therefore,

Ait R A:;/,t\lf?u‘;()v(l, . ,)Zn/) ~Q~Q.

This together with (2.103) shows that there is a complex-valued function p(t) with
llIIl |t|N p(t)Al,t T An’,tQO - ‘Ijout(Xh e 7Xn’)

t— + oo H (in)
(=)

‘:O VneN.

Since, obviously,

lim Hp(t)Al’t tee An’,tQO‘ =1 lim ‘Alﬂf e Anl’tQOH s

t— + oo t— + oo
(=) -

we are left to prove

lim \t]Nsup flu = ~An/,th — /All’s e An/’sQoH =0 VneN,
t—>(—l—)oo s>t
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as far as the special HRK sequences are concerned. This however, is a simple
consequence of

~ ~

Ay Ay Ay Qg —Al,s"'An',sQOH =0 VneN.

)

lim [¢Y  sup

t—»(i)oo s,8'€(t,t+1)

Finally, it is an easy consequence of local commutativity and Definition 2.3.1 that

holds for all N € Nand v € {1,...,n}, if {Afjt} is any other HRK sequence for
) teR

as(x,); Lee
(2.101) does not dependent on the special choice for the HRK sequences. i

lim ’t‘N HAl’t e An,tQO — Al,t e A:/,t ce Anth(),t

t— + oo
(,

Exercise 41 Show the following:

(i) Unitary mappings Viut from Ho onto H fulfilling (2.86), (2.88), and the asymp-
(in)
totic condition do exist.

(i) The numbers . may’* depend on n but not on the functions y,, .

Exercise 42 Assuming that the local algebras are given by a neutral scalar WIGHT-
MAN field as described above, show the following for the PCT operator 6 considered
in Exercise 39 and the corresponding operator 6, of the FS:™

(i)

A A

0U(a,A) = U(—a,N\)§ V¥ (a,A) € P},
(ii) O
9‘/out = VEHQO ) OVin = V:)uteo )
(iii) The described scattering theory is PCT-invariant in the sense that™

-1

A~

~ 3 .

>

0

Draft, March 26, 2009
"Suitable extension of the asymptotic condition implies ¢4 = 1 for all n (see (Liicke, 1983)).
Note that (i) implies 0.A(O) = A(—0)d for all open O C R*.

"For a (complicated) proof not using this assumption see (Epstein, 1967).
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2.3.4 Cluster Properties of the S-Matrix

Definition 2.3.5 Let {M}, p C R* and {Bt} C L(H). Then B, is called
teR
asymptotically localized in M, if the following two conditions are fulfilled:

(i) For every N € N there is a sequence of local operators
Ave AUy (M)

with
=0.

t—+oo

(i)
lim ]t\_N HBt =0 for sufficiently large N € N.

t—+oo

An immediate consequence of Definition 2.3.5 is the following

Corollary 2.3.6 Forv = 1,2 let Bj,t be asymptotically localized in M;,. Then

Bt def Bl,tégi 15 asymptotically localized in M, def M+ UMy, .

Definition 2.3.7 Let {M},  CR* and ¥ € H. Then {Bt} C L(H) is called

teR
a M,;-sequence for U if the following two conditions are fulfilled:™

(i) Tims_se |t|NHE’tQO—\IIH —0 ¥NeN.

(ii) B, is asymptotically localized in M, .

Theorem 2.3.8 Let X1, ..., Xn € D(R?) be non-overlapping and let 3 be a smooth
spacelike hypersurface (without finite boundary points) above resp. below™ all the
sets

(K, +ay) N (Ky, +a,) , v#u,
for given ay,...,a, € R*\ X. Then there are (t¥ — ta,)-sequences {By7t} for

, teR
the 1-particle states a5(x,) and a real number Qo TeSp. Pin With™

Al_]}I—POO |t|N Hg’ex (U{)(}\al)Xb ey UO()\an)Xn>
— GWCXBL,\(Aal) te Bn)\()‘an)QOH =0 VNeN

Draft, March 26, 2009

"Note that for U = ag(¥)Q0 and M; = Ky NS, the M;-sequences are just HRK-sequences.
We say X is above a set M C R*if M C {(xo — t,%): er,t>O}.
(+)

(below)

. "6The special choice for the (¢t — ta, )-sequences is not essential. As usual, we use the notation
B(x) =U(x)BU(x)"! for B € L(H), x € R*.
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where ex=out resp. ex=in .

Proof: Straightforward application of the described standard techniques. I

Theorem 2.3.9 (Fredenhagen) Let 7 > 0 and let A, B € L(H) fulfill the con-
dition™ o )
[UMAU@t) ™, Bl =0 Vte |- +1].

Then

(o0 1 4300) — (0 ) (0 )] < e [ o ] -]

Proof: See (Fredenhagen, 1985). i

All we need for the derivation of cluster properties of the S-matrix is the following
immediate consequence of Theorem 2.3.9.

Corollary 2.3.10 Forv =1,2 let Bj,t be asymptotically localized in M;, . If there
is some € for which

1
A> - = Ml,)\ >< Ue)\<M2,/\)7
€

then

lim AN H<QO | BMBMQO> - <Qo | BMQO> <QO | BMQO>H —0 VNeN.

Now the cluster properties of the S-matrix are an immediate consequence:
Corollary 2.3.11 Let x1,...,Xn @1, ..., 0, and 3 be given as in Theorem 2.3.8 for

‘above’. Moreover, let X', ..., X, a\, ..., al, and ¥’ be given as in Theorem 2.3.8 for
‘below’. Finally, let I C {1,...,n} and I' C {1,...,n'} be such that

((KXul +au1) N E) U <(K5<Li +a:’1) OZ’)

18 spacelike relative to

((KXVQ + CLZ/Q) N E) U <(K>Zi/é + a;é) N 2/)

forallvy eI, viel andvy € {1,--- n}\I,vhe{l,....n"}\I".

Draft, March 26, 2009

7 As usual, we write U(t) for U ((t,0,0,0), 1) .
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Then there is a real number p with

Hm AV e (Woue(A) | Win(A)) = (Wrout(A) | Urin(A) (Pooue(A) | Tom(A))| =0

A——+00

for all N € N, where
def a N Ak [~ a / -1
\Ijout(/\) - V:)ut H (U(/\ay’)a’() (XV’) (U(/\ay’> ) Q0 )

~ ~ ~ —1
Viow(D) < Vo | ] (U(Aamaz(m ((ra,) )Q)

~ N N —1
Vo) Vo [ T (00aa () (F00) )0 )

Typical consequences of Corollary 2.3.11 are illustrated by Figures 2.9 and 2.8 (see
also (Liicke, 8384))." Roughly speaking, Corollary 2.3.11 shows that, from the
macroscopic point of view, the S-matrix does not violate the causality principle.

It should have become clear from the evaluation of the asymptotic condition,
that the field ®(z) itself is not necessary to determine the S-matrix once the set of
almost local operators is determined. Note that the representation U (a, A) of Pl is
already fixed, up to unitary equivalence, by the FS. Of course, one cannot expect
that the Hamiltonian PP itself determines the physical picture of the dynamics unless
the physical interpretation of the other observables is sufficiently well established.
The above considerations show that it is sufficient to specify the macroscopically
localized observables consistently, in order to select the S-matrix.

Draft, March 26, 2009

"8Figure 2.8 illustrates the case n = 4, n' = 6,1 = I’ = {1,2}; using the notation K, def

Ky, +Aay, K, < Ky + M,
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Ky K K3 Ky

Figure 2.8: Macroscopically independent: ‘1+2 — 142" and ‘34+4 — 3+...+6’

K.

o T Q2

Figure 2.9: Macroscopically forbidden: ‘output before input’
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2.4 Charged Scalar Fields

2.4.1 Free Charged Scalar Fields
Fields Operators

It is known, nowadays, that for every charged particle there is an antiparticle
with opposite charge. Let (2.39) describe such a particle in the sense of 2.1.3 and,

similarly,
x(+) def X —ipx dp
By (0 2m) 2 [ o) Sh

pO=wp 2p0
the corresponding antiparticle on its FOCK space 7'?0 with domain lu)o and represen-

tation U o(a, A) of PJTF . Then both particles may be described simultaneously by the
charged scalar field

by () LV (z) @ 1+ (]1®5>é+)(a:))* (2.104)

on

D dﬁfDQ@DQCH difH0®H07

generalizing (2.43). As for the neutral scalar field, the relations™

(O+m?) dy(x) = 0, (2.105)
Uy(a, N @y (2)Uy(a, A)™' = ®y(Az+a), (2.106)
[Ci)q(x),(i)q(y)}_ = 0 forz Xy, (2.107)

are fulfilled for the charged field, where
def

Uy(a,A) = Up(a, A) ®Uo(a A).
Nevertheless, the charged field cannot be interpreted as observable of what-
ever field strength since, according to (2.104), it is not hermitian. This is the
price to be paid for the important commutation relation

[Q, i)q(x)] = @Jq(x) ,  where: (2.108)

(Q = observable of the additive charge,
qg = charge of the particle,
—q = charge of the antiparticle,

valid on a suitable domain. The main purpose of the charged scalar field is to create
a dense set of well-interpreted states (for scattering theory) out of the vacuum.
Now it is important to supplement (2.107) by
[@)q(a:), Cﬁ*(y)] =0 for x Xy. (2.109)

q

Draft, March 26, 2009

79(2.107) holds for all =,y .
80More precisely, (2.46) becomes [(ﬁq(ac) é*(y)} =iA(x —y).

’ g
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Local Gauge Transformations

Since the charged scalar field (iDq(a:) is non-hermitian, anyway, it may well be replaced
by
PN2) & Q@G (1) Q@) =A@ (g 2.110
@) (@) OO = O () (2.110)

if, simultaneously, the KLEIN-GORDON equation (2.105) is replaced by
(0, +ig(0, ) () (0" +iq(9"N)(z)) +m?) D) (z) =0, (2.111)

where \(x) denotes an arbitrary, but sufficiently smooth, real-valued function on
R*. As a direct generalization this leads to the KLEIN-GORDON equation

(0, + igA,(x)) (0" + igA*(x)) + m?) PMNz) =0 (2.112)

for the quantized scalar field ®(z) interacting with the ezternal (classical) electro-
magnetic field A*(z), being invariant under gauge transformations of second
kind

A

D(z) — T PDD A (z) — Ay(x) + I\ (T). (2.113)

Consistency Considerations

Exchanging the roles of particles and antiparticles results, according to (2.104), in
the transition ) )
D (w) — {y(2), ¢— —q.

Obviously, (2.112) is invariant under this transformation (since A*(z) is real).

For sufficiently well-behaved external fields A*(x) there exist solutions d of
(2.112) respecting the interaction picture (Seiler, 1978).

Interpreting classical solutions of the KLEIN-GORDON equation as expectation
values of the quantized KLEIN-GORDON field solves the well-known problem raised
by creation of negative frequency contributions in certain scattering problems (see
e.g. (Baym, 1969, Chapt. 22)).

Replacing the classical electromagnetic potential A*(x) in (2.112) by the corres-
ponding quantum field A“@) leads to the difficult problem of defining products of
quantized fields (basic problems of renormalization theory).

2.4.2 WIGHTMAN Theory for Charged Scalar Fields
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WIGHTMAN Axioms

A WIGHTMAN theory of a single charged scalar field ®(z) is characterized by the
following assumptions (WIGHTMAN azioms ):

0. Assumptions of Relativistic Quantum Theory:

Exactly the same as those for the WIGHTMAN Theory of a single neutral
scalar field, as formulated in Section 2.2.1.

[. Assumptions about the Domain and Continuity of the Field:

There are two fields ®(z) and ®*(x) defined as operator-valued, tem-
pered, generalized functions with invariant domain D C H; i.e. linear
mappings

d: S(RY) — L(D,D)

o B(p) = / & () () da

N J/
g

formal

and

formal

for which all the
/<xp | <i>(x)\If> o(r)de <q, | ¢(¢)xy> WeD,

and
/<xp | é*(x)qf> o(z)dz & <\11 | <i>*(@xp> WeD,

are continuous in ¢ € S(R*), where D has to fulfill the following
conditions for ¢ € S(R*) and (a,A) € P :

QcD, UANDcCD, ®wDcCDD>Dd(¢p)D.
The fields ®(z) and &*(x) are related by

<\p | é*(gp)xp> . <\p | (c@(@))* \p> YU e D, peSRY.  (2.114)

II. Transformation Law of the Field:

The field operators ® () and ®*(z) transform according to
(0, N)&()0(a, A) " = b(Az+a) V(a,A) € P
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and®!

U(a, \)®*(2)U(a,A) ™' = d*(Az +a) V(a,A) e Pl.

II1. Local Commutativity:

The smeared fields ®(¢;) and ®(p3) resp. D*(p,) commute whenever the
supports of the test functions ¢; , ps € S(R?) are spacelike with respect
to each other.®* Formally:

Xy = [b(x), d(y)]- = [®(z), 9" (y)]- = 0.

Finally, the vacuum vector € is required to be cyclic with respect to
the algebra Fq generated by 1 AD and the smeared field field operators
P (p) and ®*(p) with ¢ € S(R?) :

Dy dof Fo () is dense in H .

Obviously, all these axioms are fulfilled for the free charged field ®(z) = ®,(z),
if we define D & D, and

A

b* () % (cﬁ(@))* AD  for p € S(RY).

PCT and Spin-Statistics Theorem

The ‘connection between spin and statistics’ for the theory of a single charged field
is given by the following two theorems.

Theorem 2.4.1 There is no charged field (i)({E) £ 0, fulfilling all the WIGHTMAN
axioms with the possible exception of local commutativity, for which

e Xy = &(2)d*(y) + P*(y)®(z) = 0.

Sketch of proof: The techniques used in Section 2.2.4 show that the expectation
values of products of field operators exist as generalized functions and that there
are L! -invariant generalized functions W, W € S(R*)’ with

Q| ()P (y)Q) = W(z—y),
QO (2)(y)Q) = W(z—vy),

Draft, March 26, 2009

81By (2.114) the transformation law of ®(z) implies that of ®*(z) and vice versa.
82Note that that this condition can be shown to be necessary to avoid acausal effects.
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and o —
suppW C Vi D suppW . (2.115)

Now, assume

A

vXy = b(n)d*(y) + & (1)) =0,

1.e.

W(E) +W (=€) =0 for£X0.
Since W (&) — W (=€), being an odd L -invariant distribution, vanishes for spacelike
¢ this implies
FE)EW(E)+W(E) =0 for £X0.
Since, by (2.115),
suppf C WF D supp%
Corollary 2.2.9 tells us that F' =10, i.e:

<Q | é(x)cﬁ*(y)@ + <Q | <I>*(—y)<i>(—x)§2> —0.

Therefore, we have
0o~ |/ (<Q|<I>< ' w)Q) + (2] () b(~2)2) ) (Vo) dady

— H( ) H/ci)() (—2)dz Q

for all p € S(R*) and hence

[\

P (2)Q=d(x)2=0.
By cyclicity of Q, however, this would imply ®(z) = 0. i

Theorem 2.4.2 There is no charged field @(x) # 0, fulfilling all the WIGHTMAN
axioms with the possible exception of local commutativity, for which the conditions

Xy = (x)d(y) — *(y)P(z) = 0
and

Xy = (x)d(y) + P(y)d(x) =0
hold.

Sketch of Proof:* Assume

Xy = ()" (y) — & (y)d(z) = 0
Draft, March 26, 2009

83This proof may be applied to a much more general situation (see
(Streater and Wightman, 1989, Theorem 4.8)).
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and

A

e Xy = O(z)d(y) + ¢(y)P(z) = 0.
Then for all ¢, ¢ € D(R*) with

suppy X suppt)
we have
0 < [ébwal
= (21 (3w) (4°(0)) & (2)(w)2)
= — (9] (¥() ¥ (0) (o) dw)2)
Since

this implies . .
(21 (2 (9) (@000 (¢v) dw)2) <0

for spacelike a and sufficiently large A = A(a, ¢, ). On the other hand, however,
one may prove®* that

lims oo (2] (9()) ()0 (2a) (2(0)) 2(0)02)
= (21 (#(0) & (0)2) (2] (2()) eW)2

2 2

Therefore R .
O (2)Q = P(2)Q2 =0,

A

which, by cyclicity of €2, would imply ®(x) =0. i

Now, of course, the PCT theorem has to involve both ®(z) and ®*(x) :
Theorem 2.4.3 Letn € N and let (iD(x) be a charged scalar field fulfilling all the
WIGHTMAN axioms with the possible exception of local commutativity. Then the

PCT condition

<Q | by (21) - --i)n(xn)§2> - <Q | (=) - &1 (—20)0

) L (2.116)
VreRIn b, e {CD,CD*
Draft, March 26, 2009
84Gee (Araki et al., 1962, Theorem 3) for a proof of this cluster property not depending on 0
being an isolated point of the energy-momentum spectrum. See also (Maison, 1968) and, for a C*

algebraic version, (Baumgirtel, 1995, Theorem 1.2.5).
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15 equivalent to the condition of weak local commutativity

<Q | &y (21) - -.i)n(zn)9> - <Q | By (2) - --ci>1(x1m>

) o (2.117)
for (x1 — o, ..., 201 — ) € T, P, € {CID,CIJ*} )

Proof: Analogous to that of Corollary 2.2.22

Exercise 43 Show that (2.116) is equivalent to existence of an anti-unitary Oper-
ator @ fulfilling the conditions

HH>>

b0 = ([ #-a)p0rae) 0 voes®Y. b e fo0)

and = o
0U(a,\) 0 =U(—a,A) V(a,A)cPl.

2.4.3 Scattering Theory

Now assume that the IS is described by a charged scalar field ®(z) fulfilling all the
WIGHTMAN axioms and that the corresponding F'S may be described by the free
charged scalar field @, (z) .

Since the 1-particle states are charged they can no longer be approximated by
states of the form EQ, B e Ao . Here the local observable algebras have to be
replaced by some net of local field algebras F,(O). It is not evident how to
define these algebras of bounded operators.*® This problem can be be avoided by
working with unbounded operators (Liicke, 1983). For simplicity, however, let us
assume that the F,(O) are specified and fulfill the conditions of isotony

01 C Oy = F,(01) C Fp,(0s),
local commutativity
01 X0y = [F,(01), Fp(09)] - = {0} ,
POINCARE covariance
U(a, A)F,(0O)U(a,A)™" = F(AO +a)

and trreducibility

(U ]-"b(UR(o))) ={Al: xeC}

R>0

Draft, March 26, 2009
85See (Driessler et al., 1986a) for a detailed discussion of this point.
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(compare (2.90)—(2.93)). Then the corresponding net of local observable algebras is
given by
def

A0 {Ae7(0): [4,Q)- =0},

where Q is the charge operator (uniquely) defined by

~

Q. 2(9)- = —qd(p) 5 Ao _ . A
@*(g&)_ _ —l—qfi)*(@)} VSOES(R)a QQ—O7 Q _Q7

and the scattering theory described for the neutral field can be applied to the charged
field with the following modifications:

1. Everywhere, except in the asymptotic condition, the field algebras F,(O) have
to be used instead of the observable algebras.

2. Asymptotic states with arbitrary number of particles and antiparticles have
to be considered.

3. The HRK sequences have to be defined for both particle and antiparticle states.

Now, of course, the resulting PCT invariance of the transition probabilities also
involves interchange of particles and antiparticles.



Chapter 3

)\Cbﬁ Perturbation Theory

“Renormalization theory has a history of egregious errors by distinguished
savants. It has a justified reputation for perversity; a method that works up
to 13™ order in the perturbation series fails in the 14™ order. Arguments
that sound plausible often dissolve into mush when examined closely. The
worst that can happen often happens. The prudent student would do well to
distinguish sharply between what has been proved and what has been made

plausible, and in general he should watch out!””

A.S. WIGHTMAN (Velo and Wightman, 1976, p. 16)

3.1 General Aspects

3.1.1 Interaction Picture
General Definition

Let us formally assume that the ‘same’ instant measurements can be performed on
the IS as well as on the F'S and that the expectation values for all such measurements
performable at a fixed time ¢ determine the corresponding state uniquely. Then we
say

“U € H resp. ¥, € Hy looks like &y € Hy at time ¢”

if all the expectation values for identical measurements to be performed at time ¢
predicted by W resp. U, are the same as those predicted by @y .

Moreover, let us assume that for every state ¥ and for every instant of time ¢
there is a state Wi(t) of the FS such that ¥ € H looks like Wi(t) € Hy at time .
Then we call Uy(t) the instantaneous state at time t of the IS in the interaction
picture, if the IS is in the actual state U . See Fig. 3.1 for the example of a classical
particle moving in an external potential.

In general, if the interaction picture exists, the AC should be of the form

i(t) — Wy (3.1)
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loc. at tg

Figure 3.1: Interaction picture for a classical particle

for suitable specification of the type of convergence.

Formalization (in view of quantum theory)

Assuming that the interaction picture exists, in the sense described above, let us
introduce the following notation:

Ao ' Set of all instantaneous measurement performable at time 0,
an(A) ' easurement A € Ay time-shifted by At,
i def . M
A = UteR {O‘t(A) P A€ AO} )
E (A, \if) def expectation value of A € A for the IS in state ¥,

Ey (A, \i/o) def expectation value of A € A for the FS in state Uy,

While the set of all instantaneous measurement procedures is the same for the IS
and the F'S, the instantaneous states develop differently in time:!

U)o %' state of the IS, at time ¢ looking like ¥ at time 0

) : (3.2)
Uo(t)¥y ' state of the FS, at time ¢ looking like W at time 0.
Consistency requires
E) <@t(A)a U <o>(t)‘1’<o>> = B (A, T)) YAEA. (3.3)

The instantaneous state Wi(¢) in the interaction picture at time ¢ of the IS in the
actual state W is determined by

Eo (au(A), U1(1)) = E (a(A), ) VAeA. (3.4)

Defining X
W ()0 (1)

Draft, March 26, 2009

"Warning: In general, U(t) and U (t) depend on the choice for the origin of the time-scale.
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by (3.1) we formally get

-1

WOl — b, = V. 0 YU eHou,
t_)('f)oo () (2.78)  (n) (in)
ie.: ) )
W(t)_l - vout . (35)

t— + o0 (in)

By (3.3) and (3.4), assuming (without restriction of generality)

W (0) = identity mapping,

we have

~
~

W) = U0, W)™ = U@)Us(t)" (3.6)
and therefore, by (2.82), (3.5) implies

~ ~ A
~

— lim Q(t,.t.), where:
o= lim (ts¢t-), where (37)

Aty t) S Uo(t) U () 0 () To(t) "

>

The type of limit, depending on the model, has to be suitably defined, of course. If,
in addition, we also have homogeneity in time, i.e.?

~
~

Uo)(t1)U (0 (t2) = Uy (tr + ta) ,
(3.5) and (3.6) imply

~
~

0(t)vout - VoutUO(t) ) ‘7
(in) (in) (in) (in)

and, by (2.79)/(2.82), therefore:

~
~

(3.8)

~
~

S0, U ()= =0.

Application to Quantum Theory

In quantum theory the states

o) = W )
are given by state vectors Wy from the corresponding Hilbert space H ) and the

time translations U (0)(t) are given by unitary operators U(O)(t) in H,

~
~

U(O) (t) \II(O) = wU(Q)(t)\I/m) )

Draft, March 26, 2009

2In this case U(t) and Uy(t) are independent, of the choice for the origin of the time-scale.
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depending strongly continuously on ¢. Therefore, according to Stone’s theorem, we
may define the Hamiltonian H)(t) by”

~

£ def [ . d 2 _ 2 ~ 1. d
Ho®) (i3 (Oo®™) ) Oo®) = =Uo @)™ iU,
dt dt
even if we do not have homogeneity in time. This implies

i0,Q(t,t_) = Hy(t)Q(t,t_), where:

e . ! . 3.9
(1) " o) (£1() — (1)) ()", 39
which, formally, is equivalent to*
t
Qt,t)=1- @/ Hi(t)Qty t)dty (3.10)
t_

since Q(t_,t_) = 1, by (3.7). As usual, this integral equation may be formally
solved by iteration giving the so-called DYSON series.

3.1.2 Canonical Field Quantization
Field Equations

Hoping to convert the free KLEIN-GORDON theory into a model with nontrivial

S-matrix, one adds a local self-interaction term of the form® \, F(®(z)): with
coupling constant )\, > 0 as perturbation to the KLEIN-GORDON equation:®

(D + m2b) CiD(x) = —)\be(Cﬁ(x))f : (3.11)
Best studied is the so-called X (®*),-theory given formally by F(®) = 2®*. Nev-
ertheless, nobody succeeded up to now in giving this theory a precise meaning by
rigorous construction. This is due to tremendous technical difficulties connected
with 4-dimensionality of physical space-time.” In 2- or 3-dimensional model space-
time these difficulties are much less severe and have already been overcome (See

Draft, March 26, 2009
3Note that (%U*) U+ U‘liff =0.

4In naive quantum electrodynamics (before renormalization) one has:

B0 = [ () Acl)
V=

5Locality, i.e. dependence of the interaction term on the field values at the space-time point z,
corresponds to the point particle picture.
SFor the corresponding classical field theory see (Reed, 1976). For the problem of defining the

operator function F(®(x)) via : : (in the sense of (3.20)) see (Scgal, 1962; Segal, 1983). Negative
values of m% lead to spontaneous symmetry breaking.

TActually there are even indications that such a construction is not possible; see
(Bég and Furlong. 1985) and references given there.
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e.g. (Glimm and Jaffe, 1981; Constantinescu, 1980) and (Streater and Wightman, 1989,
Appendix).)

Time-Zero Fields

Let us assume that there is a rigorous construction for the interacting theory formally
described above. Moreover assume — in spite of all knowledge to the contrary — that
the interaction picture, as described in Sect. 3.1.1, is applicable to this theory with
the corresponding “free” system being described by the neutral scalar field (fo(x)

with physical mass® m :

0(0,x) = ®(0,x),

. dof - - . of - = 3.12
11(0,x) = 9o®(x),_, = Mo(0,%) d:fa()@()(a:)‘zo:o. (3.12)

Under these conditions
{G(d(x), 11(z)): = U(2°):G (cbo(o,x), f[o(O,X)> 0 (2°) (3.13)

might be a good definition® for well-behaved functionals G of ®(z) and II(z). Here
. denotes normal ordering, i.e. the factors of monomials have to be interchanged —
as if they were commuting — such that no creation operator is on the right of any
annihilation operator.

In any case, by (2.39), (2.40), and (2.43), we have

“ d ) . .
do(x) = (2m) 32 /0 2—;) <€L(p)e_”"%0 + &*(—p)e“p%()) etpx (3.14)
p =wp

and hence for real-valued ¢ € S(R?) :

J dx (0, x)p(x) = Az + Az | fdxﬂo(o,x)gp( ) = —iAMHA* . (3.15)
where:  (p) déf( 3/2fdx<p —ix A deff dp a

By (3.14) and (2.34), (3.12) implies the canonical commutation relations

[@(0 x), [1(0,y)] = id(x—y),
} (3.16)

[ci)(o,x) [ (0, %), H(o,y)]_ —0

on Dy, as defined by (2.27).

Draft, March 26, 2009

8Tn case m coincided with the bare mass my, there would be no chance for et — Voutemot‘z);tl
to hold together with (3.21), since the latter implies coincidence of the spectra of H and Hy .

9Note, however, that : G <<i>0(0, x), 11, (0, X)) : is well defined as quadratic form on Dy (see, e.g.,

(Reed und Simon, 1972, Sect. VIIL.6) for the definition of quadratic forms) but not necessarily as
L(Dg, H)-valued generalized function of x.
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Let { f“}u be a complete orthonormal system of scalar 1-particle wave functions
fulfilling

fu(p) = fu(_p) (3‘17)
and define

() 2 (2m) 32 / dp Fu(p)e™ | u(x) L (2m) 2 / ap 2P giex (3,15

4wy

Then, by (3.12)/(3.15) and in agreement with (3.16),

m(0un) e (if dxI1(0.%)74,(x)) .

- de . = 3.19
T (VH(T) Lot exp (if dxCID(O,x)Tgou(x)) , ( )

defines a regular representation'’ of the WEYL commutation relations (1.45):

A ~ A~

U,(T)V,(s) = €™V, (s)U, (1) etc.

Even if (3.12) is not fulfilled, the field theory is called canonical, whenever (3.19) is
a representation of the WEYL commutation relations. Then 7 has a unique extension
to a true representation of the CCR algebra.

Exercise 44 Show that, provided (3.12) holds, the representation of the CCR

algebra resulting from (3.19) is equivalent to the FOCK representation (discussed in
Sect. 1.3.3).1!

Exercise 45 Using (3.15), show the following:

(i) The (identical representation of the) C*-algebra (in Hy) generated by the
bounded functions of smeared time-zero fields ®((0, x), I1y(0, x) is irreducible.

(ii) Qo is cyclic w.r.t. (the restriction of this representation to) the abelian sub-
algebra generated by bounded functions of the smeared field ®4(0, x) .

Draft, March 26, 2009

ONote the nontrivial dependence on the mass value m .
HFor comparison with the theory of ordinary independent quantum oscillators, note that

o of 1 I Dr(z,) + ip, 1
(0) ® Gr(a) + inlp) = THTZAEEE for =D = 5
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Use of the Canonical Commutation Relations

If the canonical commutation relations hold and if :: is defined such that!?
FAG)M, Blx))-

NARUAR), BE i {A(), B()} = {6(0,.),11(0, )}

_ or {A(.), B(.)} = {9;%(0,.), 11
0 it A(.) € {®(0,.),9,9(0,.)} 3 B()
or A(.) = B(.) = 11(0,.),

form

U % indefinite integral of F',

(3.21)

14— was the original starting point for constructive field

which — in a cutoff version
theory.

Reminder: In classical LAGRANGE field theory the Hamiltonian

3 [ (LG0? + (V0 (0)? (7 + 200 (@1(x)) dx.

corresponds to the Lagrangian

L(end) =1 / <(<i>t<x>)2 (V%)) — m2,(x)* — 2AbU<¢t<x>>) dx

with

H (étvnt) ==

def oL o <
Ht(X) = 5q)t(x> —@t( )

The EULER-LAGRANGE equation
d 6L oL

At 5dy(x)  0Bi(x) :

Draft, March 26, 2009

12Note that, for bounded operators, [AB, C‘], = A[B, CA'], + [/1, C’],B and, consequently:
[A,B]_ ~1=[AN,B]. = NAN'[A, B]_

For (3.12)/(3.13), (3.20) is (formally) a consequence of WICK’s theorem (Theorem 3.2.1).
13Thanks to

Al \N T —iX—X’: 9 AX/NZ

FAX)NLI(0,x)] - = id( ) 'Bi)(07 x’)A -
SAX)N: $(0,x = —id(x—x): 0 A(x')N:
FAGOY B0, = —idx =) gl )

UNote that, e.g., even : ®¢(0,x)*: is not well-defined (except on 2-dimensional space-time).
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(more precisely: family of equations, parameterized by x) for this Lagrangian is the
field equation

(O+md) &(z) = —MF (D(2)) , B(t,%) E Dy(x).

Note that the EULER-LAGRANGE equation is equivalent to the Hamilton equations

B = —{H (B0T1). 800} = 5
G0 = = {H (@011 T} = —50

where the PoissoN bracket {,} is defined by

def oF 0G OF 0G ,
{rar= / <5<I>t(x’) SIL(x))  OlL,(x') 5<I>t(x')) dx

for functionals F, G of &, I1; .

Indeed,
Otx) = MH, B(0,x)] e
it v : - r —iHt

= et — [ LII(0,x")%:, (0, x)]_ dxe

i O [ moxE b0

3.13),3.16)

= ety [ 11(0,x')[T1(0, %), &(0, )]} dx’ e~

(3.20) A )
= eHETT(0, x) et 3.22

376 (0,x) (3.22)

and a similar formal calculation verifies

&)t,x = U TI(0,x)]_e
(3) 5, G TH0.)

to be in agreement with the field equation (3.11).
However, locality and relativistic covariance of the formal solution (3.21) are not
so easy to establish.!®

Exercise 46 Show for arbitrary ¢ € S (R3) that

|S0 P1 +P2

wpl wp2

1dp2 < 0

and therefore

/: <ﬂ(0,x))2 + (V@(O,X))2 +mi (@(0,}())2 tp(x)dx € L(Do,H).

Draft, March 26, 2009
15Note that we do not care about the domain of definition for H . For : F($4(0,x)):Q # 0, the
case of interest, there are obvious difficulties with the FOCK representation.

~ A i.g. RPN
6Note that [A,B]- = 0 #= [e",eP]_ = 0 (see e.g. (Reed und Simon, 1972, Vol. I, Sect.
VIIL5) and (Frohlich, 1977)).
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Inapplicability of the FOCK Representation
Let us assume (3.12) to be valid. Then

A ~

U(0,a)®,(0,x)U(0,a)"" = U(0,a)®(0,x)U(0,a)"
®(0,x + a)

Dy(0,x + a)

Uy (0, 2)®o(0,x)Up(0,a) !

and the corresponding conclusion for Ily(0,a) imply (compare Exercise 45(i)):

U(0,a) = @ ,(0, a)

for suitable real-valued op(a). There is only one 1-dimensional subspace which is in-
variant under all UO(O, a), and this contains the FOCK vacuum €, characterized up
to a factor by Py = 0. For the physical vacuum state vector €2, characterized
up to a factor by

U@)Q=Q VaeR?,

we have

~
~

Uo(0,2)Q = e #@[(0,2)Q = e #@Q .
Therefore also €2 is an element of the invariant 1-dimensional subspace, i.e.:
QO = e .
This means that both U(0,a) and Uy(0, a) leave Qq (and Q) invariant and thus have
to coincide: R R
Up(0,a) = U(0,a) VacR®.
Since, for obvious physical reasons, (3.8) should be supplemented by

U(0,a) = Vot Up(0,2)Vnl VaeR?,

out

we get commutativity of }Z)ut with all Uy(0,a). Now, since P? is a function of Py,
commutativity with all Uy(0,a) implies commutativity with all Uy(t). Thus, by
(3.8) we have A A

Up(t,0) =U(t,0) VteR
and hence ) A

dy(z) = ¢(z) Ve R*.
HAAG’s theorem'” says that this conclusion is correct even without (3.8) and its
generalization and without specification of H , if the theory fulfills the WIGHTMAN
Draft, March 26, 2009

I7A rigorous proof is given in (Streater and Wightman, 1989, Sect. 4.5). In a first step, rela-
tivistic covariance is used to show that

(219@)em)2) = (2 | So(@)o(y)% ) *)

holds for z Xy, since the equations holds for z° = 4% = 0. This together with the spectrum
condition implies that (*) holds for all z,y € R*, as can be shown by standard techniques of
axiomatic field theory (for a stronger result see (Liicke, 1979, Corollary)). Then the JOST-SCHROER
theorem (Theorem 2.2.18) says that (x) can only hold for all z,y € R* if ®y(x) and &(z) are
unitarily equivalent.
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axioms formulated in 2.2.1.

So, unfortunately, it is not possible to define the Hamiltonian on a suitable
domain to make the formal solution (3.21) of (3.11) a true one — as long as one
insists in (3.12) for all x € R3.

In spite of HAAG’s theorem there is still hope (compare (Baumann, )) that a
nontrivial canonical A (®*) -theory might exist."® For such a quantum field theory,
of course, the representation 7 given by (3.19) must be inequivalent to the FOCK
representation. All this was illustrated in constructive field theory by several models
living on space-time of dimension < 4.

For the free field, of course, nothing is wrong with the canonical quantization
procedure (3.21) (for A\, = 0).

3.2 Canonical Perturbation Theory

3.2.1 DyYsoON Series and WICK’s Theorem

Let us consider an IS for which the interaction picture works as described in
Section 3.1.1:

S = lim Q@
’ 3.7 b oo (bt
A A~ t+
Q. t) = 1—i Hi(H)Q(¢, ) de, ,
(t4,t-) 310, 5 (1), 1) (3.23)
Hi(t) = Uy(t) (H(t) — Hy(t)) Up(t) .
(0 = Do) () = o) Gott)

Let us assume .
Hi(t) = AH ()

and that — on a suitable domain — Q(t, t_) depends sufficiently smoothly on A. Then
the LEIBNIZ rule gives

ROt ) /
t

and, because of

(Z) akﬁl(t’)) Q' t)dt’ forn >0

(xm@)_:{ﬁw>mu~ﬂ,

0 else

Draft, March 26, 2009

18Note that existence of a unitary operator Uy fulfilling the conditions
&)(07 X) = ﬁR(i)O(Ov X)Uﬁl ) (i(():X) = 0Rﬂ0(07 X)Ugl )
P (é(x)) L= U0 F (éo(o,x)) U710 ()1

for |z| < R would have been sufficient for the formal proof of (3.11) in this region.
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the iteration formula

t ~
At t),o = i [ nE(t)
t

e

a;“(z(t’,t,)) dt’ .
[x=0

Since, X
Q(t,t_)

this gives the (not necessarily converging) Taylor expansion

=1,

[x=0

Atet) = 143 () // (k) -+ E(ty) dt, - - - dt,

t_<t1<..tn<tt
N

v~

%Z // T(F[I(tn)---lfll(tl)> dty - dt,,

Snt_<fpi<o<tpm<ts

/ / Hl(tl)) dty - dt,,

T (ﬁmn) (¢ )) © Fi(ten) - Hi(ty) for m € S, with tpy < ... < tn,

where!?

is the so-called chronological product of Hi(t,),..., Hi(t;). The usual short-
hand notation for the resulting formal perturbation expansion of the S-matrix is:

A +OO A
So =T exp (—z’ HI(t)dt) : (3.24)

— 00

In view of A®}-theory let us formally assume

Hi(2°) =i / g(x) Sy () dx (3.25)

where Sy (z) is a normal ordered function of the free field ®o(z) and its derivatives
at the space-time point . Then (3.24) becomes:

SO_Hva/ / (1, 20) (@) - gan) Ay - - - day

where S, (z1,...,z )dﬁfT<Sl(:c1) S‘l(atn)> .

(3.26)

In order to facilitate evaluation of the S-matrix elements the chronological prod-
ucts should be expressed by normal ordered products. Formally this may be done
by applying WICK’s theorem.

Draft, March 26, 2009

9This is the definition for BOSE fields, only. However, even if the theory contained FERMI fields
the Hamiltonian ought to be of BOSE type.
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Theorem 3.2.1 (Wick’s theorem) Let*’

)A(y($> S {(i)o(l’), 80<i)0(x), e ,(93<i>0(x)} fO’f’ vV = 1, e 7jN

and let j; < ja < ...<jn. Then
X (@) X () X (1) - X () o X1 (T 1) o X ()
=:exp dxdy Q )A(,, Xz )A( Yy Q A T N~ TN
(3 [ oo v s )

v<jk<p
for suit. k
Xl(xl) o 'XJ'N<xjN) ©

if — formally — the fields x,(x) are considered as independent functional variables.

Proof: From the simple chain of equations

5 () B (D5 (), By (1))
= (I)(J)r(gfk) T ‘I>0+(ﬂfn—2)‘1’6($p+1) g(mqfl)q%r(xn) R
O () B (20-2) [0 (n-1), B (2 )] 07 ()
+OF (wg) - - OF (1) [@F (), Py (€n11)] -

by (1) -+~ Dy (wr-1)DF (1) -~ F (@n) X1 (Tns1)
=D (1) -+ @ (2g—1)Pq (z1) - - ‘I’Sr(xn)inﬂ(ﬂ?nﬂ)in
+ D 108 (@), Xnt1(Tng1)]-®g (21) -+ g (z-1) [ € (2)

v=~k nu==k
nFY

holds for X,11(x) € {@a (x), i)g(x)} . This implies

:)A(l (Il) T XTL(‘TH) :>A(n+1(l'n+1)

n

= X1(@1) - X1 (@ns1) : + D (Qo | Ko (@) Rt (T041)0)

v=1

Xu(Tp):

T E
Il 3
T =

or, written in a suggestive formal way,

:>A<1<331) T )A(n(xn) :XnJrl(anrl)
5 5 )

=:exp ;//dxdy (Q0 [ Xo (@) Xn+1(y) ) X0 () 0 X1 ()
X1(z1) - Xnt1 (Tng1):

Draft, March 26, 2009
20Here, the ¥, could also be partial derivatives of various BosE fields. For the more general

case, where some of the X, (x) are FERMI fields, see Chapter 4.
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for
(@), X1 (@arn) € {85 (2), 85 (2)] - (+)

Induction w.r.t. n, finally, gives

Xl(zl) ce )A(n(xn)fén—i-l(xn-i-l)

:;exp< > [ @] b wo) s )

1<v<p<n+l Xo () 60 (y)

X1(®1) - X1 (Tng1) s,

provided (x) holds. From this the statement of the theorem follows easily for

X1(@) = ... = Koy (z) = Po(z)

and then, by just forming derivatives, the full statement. g

Corollary 3.2.2 Let Py,..., P, be polynomials. Then?'
Py (Do (1)) -+ - Po( Do)

—:J[ e <<Qo | cﬁo(xy)cﬁo(%)90> 0<i>f(x )acij(x )) Pu(@o(1)) - - - Po(o(a0)):

A

if — formally — <i>0(3:1), oo, Po(x,) are considered as independent scalar variables.

Exercise 47 Use Corollary 3.2.2 to give a formal proof of*?

e®0@) . Po) . — o (0[Po(@)P0(1)) . (Po(2)+P0(y)

e .
and the corresponding formula for the time-ordered product of the two (normal
ordered) exponentials.

For simplicity let us assume
S, =:P (@ﬂx)) :
for some polynomial P. Then Corollary 3.2.2 implies formally

Draft, March 26, 2009
21For the definition of powers of 2-point functions see Equation (3.32) and Exercise 49. Actually,
a rigorous proof of Corollary 3.2.2 is not straightforward.
*2For a rigorous definition of expressions of the form Y 7 cn: ®o(x)": with arbitrary ¢, € R
see (Rieckers, 1971).
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(IS S =

s X u=y
@ .
<> (f = 1)

Figure 3.2: WICK’s theorem interpreted in terms of diagrams

T (Sl(xl) - s}m))
—.P (éo(xl)) P (&)O(xn)) :
#5050 P (S0(a))) - P (B0le)) - P (@o(a,) ) -+ P (So(an) )

L J

deg P o
+% ZV1<;,L1 Z vo <2 Z ® = :P @0(1‘1)) U

Joipsfrona=1
(vo,m2)#(v1,11)

P Ci)o(atl,l) -P q’o(ﬂfug) P éo(mul) R &)O(xm) P é0($n> :
e l |

form —

fVQU‘Z
_|_
(3.27)

where ;

1. 0 o ”

L, — 1= iAp(x, — x,)— _
fuu! 8(1)0(1',,) aq)o(l'u>
and
Ap(z —y) © lim (27‘(’)_4/;6_”’@_” dp
e=+0 p® —m? +ie (3.28)

— <QO T (cﬁo(x)cﬁo(y)> QO> for x £ y.

This sum over all contraction schemes with f-fold contraction lines may be easily
identified with a corresponding sum of diagrams.*
In Fig. 3.2 this is sketched for the special case P(§) = &', n = 2. Here the

Draft, March 26, 2009

R Z3Subdiagrams of the type Q (tadpoles) do never occur — thanks to WICK ordering of
Si(z) .
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concrete meaning of the sum of diagrams is
T (:bo(a) 2doy)':) = do(a)'do(y)":
s 0 0 o
+ ("AF(“T = Y5k aéo(y>> o

&
N—
~
K>
o
—~
<
N—
~

2 . A
1. 0 ) 4 4,
+§ <ZAF(Z. - y) 8@0( )3¢O(y)> 3(1)0(33) (I)0<y) .
1 el ol T 4F 4.
3 (18w (@ ~ )55 aM)4 By () o (y)*:
1 el el T 4G 4.
ks (18w (@ = y) 5 5 ) Bole)'bo(y)',
giving the formal result
T (:@o(a)t2doly)':) = :@o(a)'Po(y)":
+16iAp (z — y): bo(x) o (y)*:
~T20 (1 = ) B () Po(y)* (3:29)
—96iAp(z — y)3: Do () Do (y) -
+24Ap(z —y)?t.
Exercise 48 Evaluate
m 1’4@1’5
considered as a single diagram (not a sum of diagrams).
Recall that, according to (3.28),
+A,(z) forz e R*\V_
A = + Y=
#(2) { ~A_(z) forze R\,
where?*
def . 2 2
Ay(z—y) = —i <Qo | <I>0($)<I>0(y)§20> (3.30)
= —i(2m)* [dpO(p*)s(p* — m*)e Py
and
A(z) = —Ay(-2). (3.31)
Since supp Avi(p) C V., we may recursively define
AL (p)  (2m) 2 (AL AL) (1), (3.32)

(see Exercise 49) in spite of the singularities® of Ay(z) on the light cone. Actually,
this definition has to be used in Corollary 3.2.2 and to fix Aj(x) for x # 0 :

N A% (z) forz e R*\V_,
(—1)"A" (z) for z € R*\ V.
Draft, March 26, 2009

21n (2.62) we wrote ALY instead of Ay
258ee (Bogoliubov and Shirkov, 1959, Sect. 15.2).

(3.33)
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Supplemented by (3.33), (3.27) becomes a rigorous equation on {(zy,...,z,) € R :
x, # x, for v # u}.

Exercise 49 Let M = M C R* and let F,G € S(R*)’ fulfill the conditions
suppF C V_+ 2 supp G
and
supp F'C M .

Show that conyolu:cion of F with G is well-defined and that the Fourier transform
FG of (2r)7*F x G fulfills the conditions

supp (FG) C M , suppﬁ\é cVy
and, if both F' and G are sufficiently regular:
(FG)(x) = F(x)G(z) pointwise.

The nontrivial problem is extension of (3.33) to all of R* for n > 1. No doubt,
(3.33) may be extended to a Lorentz invariant tempered distribution on all of R*
(see Sect. 3.2.2). This extension is unique up to addition of a Lorentz invariant dis-
tribution with point-like support at the origin. However, without further restrictions
there is no hope to extract physically relevant information.

3.2.2 Counter Terms and Renormalization

The guiding heuristic principle for minimizing the arbitrariness in the definition of
Arp(z)" is to make it no more singular at the origin than necessary.”® For n = 1
this means to take (3.28). For n > 1 the allowed (tempered) solutions may be
constructed as follows:

One introduces a suitable covariant regularization Ap 3 of Ap depending on a
parameter M such that for finite M the naive definition

—_~— —_~—

Rarlp) = @m0 (Beags -+ Brr) (0) (334)

works and:
[ A (z)p(x) dz rand [ Ap(z)p(x)dz Ve e S(RY),
R (Dol de J AL (@)p(r)de VoeS(RIN\V),
J At a(w)e(e)d M—oo { (—1)”fA;_r(x)<p(x) dz Ve eS(R'\ V).

For given n this regularization has to fulfill the requirement that

N
Af () =D A O 16(x)
v=1

Draft, March 26, 2009
26See also (Epstein and Glaser, 1973, Sect. 5).




3.2. CANONICAL PERTURBATION THEORY 117

has a (M — oo)-limit A% . (z) in S(R?) for a minimal number N = N(n) of
suitable sequences Aj s, ..., Ay . This way AR . (2) is fixed up to addition of a

Freg
distribution of the form v
Z c, 0V 15(x)
v=1

with finite coefficients c;,...,cy . A suitable regularization is for example PAULI-
VILLARS regularization

Seate) 2 et [ (o )

p2—m2+i6_p2—M2+2’6
2

L B s oy Vs

This gives®”

le.:
A%Jeg(:c) = limy e (A%M(:c) — AMé(x)) ,
A%,reg('r> = limy/—oo (A%M(x) — Byo(x) — Cy Dmé(x))

in the topology of S(R*)’ for suitable Ay, Bys, Chy -

Of course, these sequences have to diverge for M — oo in order to compensate
the so-called ultraviolet divergences appearing in (3.34) for M — oo. This is
what is meant by the usual saying:

The ultraviolet infinities introduced by formal use of

Ap(z) = Af ()
P —m2+ie(py —p1)? — m? +ie
1 .
—ipne gy ... d
(P — Pa1)? —m2 +ic g P

can be removed by infinite counter terms, e.g. A 6(x) for n = 2 resp.
By () + Co O ,6(x) for n = 3.

The essential result of the above considerations is the following:

For (3.26) in the limit®® ¢ — 1 with Sj(z) = A:®o(z)*: any deviation of the
working definition for Af, used in (3.29), from the physically correct one (if such
exists at all) may be compensated — at least up to second order in A — by adding
suitable counter terms C, of higher order in A :

A:®(2)t: — A:Dg(x)*: + CL(N) : Dp(x)*: + Co(N) : Dy ()2

Draft, March 26, 2009

27See (Bogoljubov and Shirkov, 1984, Sects. 23.2 and 25.2).
28We ignore the subtleties indicated by Exercise 52. See Section 3.3.2 in this connection.
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The highly nontrivial®” result of renormalization theory is that this compensation
works for all orders of canonical perturbation theory for \: ®y(z)*:.

Let us now indicate why such counter terms may be unavoidable in the construc-
tion of solutions to interacting field equations (see e.g. (Feldman and Raczka, 1977)).

We had already seen in Sect. 3.1.2 that the formal success of canonical quantization
does not depend on the choice of the ‘physical’ mass m . It does not even depend
on the normalization of the interacting field. More precisely, let ®(x) be a solution
of

(O + 17,) D(z) = —4XD(2)* (3.36)
for 1 = my, and A = Z\, fulfilling the canonical commutation relations (3.16), the
Hamiltonian being

= % / i (ci>(a;)2 + (Vo) +md()? + 22 )\b(i)(x)4> Ldx 4+ 0E (3.37)

(compare Sect. 3.1.2). Then
by (2) © VZ(2)

fulfills (3.36) for m = my, and A= Ap . The Hamiltonian for $4(x) is the same as
for ®(z), of course, but in terms of ®,(x) it is given by

/0 5 ((i)z(x)Q + (V@Z(w))2 +m2 dy(x)? +2X, i)Z(x)‘l) :dx + const .
o (3.38)

Exercise 50 Show that (3.38) and
A~ def 1 S 1 X
11 = =0 =—90

correspond to the canonical formalism for the (classical) Lagrangian

L(®y, &) = 1 Dy(x)? — (VO4(2))? —m? Dy(x)? — 2\, Dy(2)!) dx.
27 Jyo_o

Therefore, given a solution ®(z) of (3.36) for 7 = my, and A = X\, with asymptotic
‘free’ time evolution governed by’

B A 2 A
Hy = —/ : (@0(35)2 + (VCDO(:C)> +m? CI>0(:U)2> -dx
2 209=0
Draft, March 26, 2009
29 A rough idea of how to proceed (in the BOGOLIUBOV-PARASIUK-HEPP sense) may be extracted
from Sect. 3.3.2. Considerable complication is caused by so-called overlapping divergences.
30Tn principle, of course, ® z(x) could be associated with several (asymptotic) particles of different
masses.
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(compare (3.21)), it may be necessary to scale ®(z) to ®(z) in order to have (3.37)
and A R . R

¢(0,x) = Pp(0,x) ,P(0,x) = Do(0,%x),
(at least up to local equivalence, if possible at all) where oo (x) denotes the free field
with mass m (not my,). Then in (3.23), formally assuming (3.13), we get

Hi(t) = / : —%57}12 Do(z)2 + Z M éo(x)‘*) dx + 0F
o=t ) A (3.39)
— / : —§5m2 <1>0(x)2+m0(x)4+5m>0(x)4> dx + 0F,
0=t

where
def

5m2d§fm2—m%, ON=ZA\, — A,
A denoting the physical (i.e. the renormalized) coupling constant to be fixed by some
convention. Introduction of the counter terms?!

1 A .
—§5m2:q>0(x)2:, SA:do(2)*:, OF

in (3.39) corresponds® to (3.35). Correct choice of the counter terms is called
renormalization.

In perturbation theory the coefficients m?, d\, § ¥ are considered as power series
in A with coefficients depending on m . Their choice has to be adapted to the working
definition of time ordering to meet physical requirements, especially stability of the
vacuum and 1-particle states and, formally:*?

5m2|x:o = 5)\|>\:0 = 6E|>\:0 =0. (3.40)

Exercise 51 For s > 0 show?* that also

def

&)(x) = 5Py (sx)

fulfills the canonical commutation relations (3.16) with I1(z) = Gy®(z) and the field
equation (3.36) for m = smy, , A = \,. Moreover, show that the Hamiltonian for

Draft, March 26, 2009

31Thanks to the counter terms there is now some chance that the r.h.s. of (3.37) may be rigorously
defined by suitable limiting procedures as in lower-dimensional constructive field theory. However,
the counter terms cannot all be finite, because of HAAG’s theorem.

32Recall that : ®g(z) O dg(2): = —m?:®g(x)2: . Therefore an arbitrary term proportional to
:®o(2) O g (z): can be extracted from dm? : do(x)?: and compensated by change of dm?.

33 Actually, as pointed out for Equation (3.35), dm? and §\ are assumed to be of higher order in
A

34This exercise indicates that — as far as perturbative calculations of S elements are concerned
— taking a mass different from the physical mass m for the free field could be balanced by suitable
change of the counter terms.
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3

%/xoo} <Z (8#&)(3;))2 + (smp,)? &D(gr;)2 + 2\, @(ac)4> :dx + const.

pu=0

>>

T
I

Exercise 52 Show that [ : @o(x)‘l :dx exists as a quadratic form but not as an op-
erator on Dy . Moreover, show that [ :®q(x)?: dz does not even exist as a quadratic
form on Dy .

3.2.3 FEYNMAN Rules

The perturbative expansion (3.24) for (3.39) — evaluated by Coroll. 3.2.2 — may
be represented by diagrams. For these diagrams we need three types of vertices
which we will draw as e, 0, and ®. Each vertex of type e or @ is connected to
exactly four solid lines, each vertex of type 0 to exactly two solid lines. These lines
may either have free ends (external lines) or connect to another vertex (internal
lines). Finally, the vertices of such a diagram G have to be indexed from 1 to Vi,
where

Va 4 umber of vertices of G

diagrams of this kind will be called admitted (for A@i-perturbation theory in 2-
space).

To write down the formal operator A represented by an admitted diagram G
one has to apply the following FEYNMAN rules:

1. Write down a factor

—iA for each vertex e,
;0m  for each vertex o,
—10\ for each vertex @®@.

2. For every pair of vertices with indices v and p, if directly connected by at
least one internal line, write down a factor

o A (0, 2,),
where f,, is the number of internal lines directly connecting these vertices.
3. Multiply by the symmetry factor®

1 lo!
I 7 11
fzxu 1

v ;
1<v<u<Vg <alVg <loc - Zﬁil foeﬂ>!

Draft, March 26, 2009

35Recall the evaluation of Fig. 3.2.
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where
[ def { number of lines
«

attached to vertex o .

4. For every external line write down a field operator ®o(x,), where v is the
index of the vertex to which the line is attached.

5. Normal order the resulting monomial and integrate all field variables over R*.

Any two diagrams have to be considered as equal if they differ only by their dia-
gramatical realization.®® For example,

R
K4

A A 1 -
GZSDSO =1+ Z WAG (341)
el

G admitted

is to be considered as equal to

Then, for suitable®” ¢, we have®®

as an equation for formal power series in A of quadratic forms on Dy .
Any two diagrams G7, Gy are called equivalent (G = Gs) if they differ only
by the distribution of their vertex indices; e.g.:

1 4 1 3 1 4
) = b} # )
2 3 2 4 2 3
Then the number of elements in the equivalence class [G] of a diagram G is ‘%,
where
7, def number of permutations of the vertex indices
“ 7 ) that do not change the diagram G .
Therefore® (3.41) is equivalent to
BN A 1 -
%Sy =1 —Ag. 3.42
(& 0 + Z IG G ( )

[G]

Draft, March 26, 2009

36Consider the lines as elastic strings. Then all elastic deformations leave the diagrams un-
changed.

37 Actually, everything should be defined with suitable cutoffs first. When removing these limits
© becomes infinite and compensates the infinite contributions of the vacuum diagrams, i.e. those
diagrams G for which Ag ~ 1. This will be used in (3.44).

38Thanks to (3.40), only a finite number of diagrams contributes to each order in A on the r.h.s.
of (3.41).

39Note that G =2 Gy = Aal = AG2 , thanks to integration over all field variables, even though
G1 = G5 does not imply G; = G5, in general.
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Denote by G5 - - - Gy the diagram consisting of the disjoint subdiagrams G, ..., Gy
with natural renumbering of their vertices. Then

~

AGl“'GN = :AGl cee AGN :

and
Ig,..an = Ic, - lay Egy gy

where
def [ mumber of permutations 7w € Sy with
Fgycy &

([Gﬁl]v ] [GWN]) = ([Gl]a ce [GND :
Thus we have, formally,
1

Ic G

11

1
EG1-~~GN ) ]G1

Ig

AGr"GN = AGl Tt AGN : (343)

N

for every set of diagrams {G1,...,Gn}.

An admitted diagram is called connected if any two vertices are connected by
a chain of internal lines. Obviously, for every diagram G there is a unique N-tuple
of connected diagrams (G, ...,Gy) with G = G --- Gy . Consequently, by (3.43),
(3.42) may be written as

A 1 -
e¥Sy = :exp( Z ]—Ag> .
¢

G connected

With the physically natural requirement’
<QO | SOQO> —1
(stability of the vacuum) this implies:

Sy =sexn( 30 pAa)i=e( X o)

[Gleg G admitted
[Gleg

(3.44)

gL {[G} - G connected, A, o i} :

In order to evaluate (3.44) one has to fix, first of all, dm as a power series in A
depending on m and 6\ . For this the physical requirement

<\If | SO\I/> — (0|0 vuenV

(stability of 1-particle states) is sufficient. Finally, one has to fix A as a power
series in A\ depending only on m. For this some convention concerning the 2-2-
scattering amplitude — depending on the preferred technical interpretation of the
coupling constant — is necessary.

Draft, March 26, 2009

40 Actually, only <Qo | §090> =1 has to be required.
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Exercise 53 Calculate the total cross section*!

~ N . 2
(2m)? <&z’;<q1)dz;(qz)ﬁo | (So — 1)a0(p1)a0(p2)90>
A4/ (p1p2)? —m* Jo=uq, 0(¢1 + g2 — p1 — p2)

0(]717]72) =

dq;dqs
247243

X6(q1 + g2 — p1 — p2)

of elastic scattering of two particles with initial 4-momenta pq, py to first order in
the renormalized coupling constant A .

Remark: The derivation of (3.44) also shows, that one may set ¢ = 0
in (3.41) if summation is restricted to those diagrams which do not have
disjoint parts without any external line.

3.3 Bo0OGOLIUBOV-SHIRKOV Theory

3.3.1 Basic Assumptions

BocGoLiuBov and SHIRKOV (Bogoliubov and Shirkov, 1959) assume that there is a
whole family of (interaction picture) S-matrices So (g) depending sufficiently smoothly
on g € S(R*, R), where S(R* R) denotes the subspace of real-valued elements of
S(RY). If

0<g(r)<1 VzeR* (3.45)

then g(z) is interpreted as a degree to which the interaction is ‘switched on’ at x
(formally by replacing the renormalized coupling constant A in (3.39) by g(z)\).

'~

So(g) is assumed to fulfill the following conditions for all ¢ € S(R?*) fulfilling (3.45):
1. So(g) is unitary.
2. Sp(0) =1.
3. Relativistic Covariance: "
Un(a, A)So(9)Us(a, A) ™" = Sy ({a, A}g) ¥ (a,A) € PL,

where
({a,A}g) (2) € g (A" Yz — a)) .

Draft, March 26, 2009
41For a derivation of this formula see e.g. (Itzykson and Zuber, 1980a, Sect. 5-1-1). For its
evaluation see also 4.3.2.
42For theories with fermions a representation of iSL(2, C) has to be used; see 4.2.2.
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4. BOGOLIUBOV-SHIRKOV causality:
(2° < y° V(@,y) € supp g1 x supp g2) = So(g1 + g2) = So(g2)So(91) -

Moreover, the functional derivatives

. . ) o A
Sn(x177xn) d:f <5g SO(Q))
lg=0

(1) dg(wn)

are assumed to exist as operator-valued distributions on S (R*) with invariant dense
domain Dy (defined by (2.27)) for the ‘smeared’ S, (z1,...,x,) and their adjoints.
With this definition we have the following formal Taylor expansion:*3

S = (o ([ aratenis ) $0)

. > 1 .
_ +§;m/sn<x1,...,xn>g<x1>---g(zn>dx1---dxn.

=50(0)

The S, (x1, ..., x,) are the central objects of the BOGOLIUBOV-SHIRKOV
theory.** Its advantage is that it does not depend on the full-fledged
interaction picture.*®

An immediate consequence of their definition is the permutation symmetry of the
Sy

gn(xl,...,xn) = S'n(xﬂ,...,xm)VWE S, . (3.46)

Therefore .
g(md;f{@n(&,...,gn) for M = {&1,....&.} #0
1 for M =10
is a consistent definition (if the M are considered as sets of R*-variables).

Exercise 54 Given the formal power series

S(g) = (7)—1—2 / ({x1, ..., zn}) g(ar) -+ g(x,) day - - - day,
R(9) = R(D)+ Zni/ ({21, 2} glar) -~ glan) day -~ e

in g, show that

S(g) R(g) = (S % R)(0) +Z /S*R {ay, ..z ) glar) - g(xy) day - - - day,

Draft, March 26, 2009
43Many properties of the S, may be easily read off from this formal power series.
HGee (Stora, 1971; Epstein and Glaser, 1973) for a more elaborated version.
45This does not mean, however, that it is physically better motivated.
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holds (in the sense of formal power series) with the convolution product*®
(S*R)(X defZS R(X\ M) for X C {x1,x9,23,...} .
McX

Relativistic covariance implies formal covariance:

Uo(a, NS, (21, ..., 2,)Us(a, A) ™t = S, (Azy +a,..., Az, +a) . (3.47)

Unitarity of So(g) implies that all functional derivatives of V(g) = So(g)So(g)*
vanish at ¢ fulfilling (3.45). For g = 0 this gives

- <59(6x1)m59(5xn) <S0(g)g0<g)*>>|g_o

-2 ((mas)so) (I sis)sor) o

MCXy, R |9:(L

=1 for M=0

Therefore, since

) 5 A o .
(59(951)"'59(%)5(9) )go =S, (x1,...,x)",

we have formal unitarity:*"

0= Y S(MSX,\M)" for X, ={x1,...,2a} , n>0. (3.49)

McCXn,

Let g1, g2 € S(R*, R) fulfill the conditions
g1(z),go(x) €[0,1] Vz e R,

2% <y’ VY(x,y) € supp gy X supp ga . (3:50)
Then BOGOLIUBOV-SHIRKOV causality and unitarity imply
30(91 + 92)30(91)* = 30(92) (3.51)
and therefore
o 5§0(9) 2
3.50) = S * =0 for (x,y) € su X su .
(3.50) 501 (0) ( 590) 0(91) (z,) € supp g1 X supp gs
|g=g1+92
(3.52)

Draft, March 26, 2009

46This convolution product has many useful applications; see e.g. (Stora, 1971; Borchers, 1972;
Doebner and Liicke, 1977; Hegerfeldt, 1985).
47Since unitarity means So(g)So(g)* = 1 = So(g)*So(g) , also 0 = Z S(M)*S(X,,\ M) holds.
MCX,
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Remark: Conversely, (3.52) implies
02,05, (S0(Mign + Aag2)So(Magn)*) =0 ¥ Aa € [0,1]

hence constancy of
O, (50()\191 + )\292)50()\191)*)

in A\; and thus*®

So(g1 + 92)S0(91)" = So(g2) So(0)*
H{—/
=1

under the assumption (3.50). In other words: (3.52), thanks to unitarity and Sy(0) =
1, implies BOGOLIUBOV-SHIRKOV causality.

Applying BOGOLIUBOV-SHIRKOV causality once more we get from (3.52)

(3.50) = (59(233) (%j}o((yg)) gg(g)*>> = 0 for (x,y) € supp g1 X supp gs .

\9191 +92

Evaluating this — or directly (3.52) — at g = 0 gives

~

Ky X) =0 for max {y® —af,..y" —al} >0,

X g 0 § 650(9) » .+,
Ry X,) . ( 0<g)so<g>) |
‘g:O

where

g(r1)  dg(aa) \ dg(y)

ie.
K(y; Xa) = D S{y}uM)S(X,\ M)*.
MCXn
This way, by BOGOLIUBOV-SHIRKOV causality and relativistic covariance, we get

formal causality:

> S{UM)S(X,\ M) =0 ify—zeR\TVZ
McCXn (3.53)
for some z € X,,, n > 0.

Exercise 55 Show that (3.53) implies

) (550(9) g()(g)*) =0fory—zeR"\V_

dg(x) \ dg(y)

in the sense of formal power series in g .

Draft, March 26, 2009

. d _ _ * _ _ *
48Since then o (So(gl + Ag2)So(g1)" — So(Ag2)So(0) > =0.
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3.3.2 General Solution
For y = x,1; (3.53) implies

S’(Xnﬂ) == Z S ({zns1} UM) g(Xn \ M)
MCXp (3.54)

M#Xnp

if 2,1 —2 € R*\ V_ for some z € X, .

This shows that the S’n(xl, ..., x,) are fixed on

&f (1,...,2,) ER™: 2, # 2, for v # p} (3.55)

R4n

forn =2,3,... once

Li(z) & —iS(2) (3.56)

is given. Of course, Li(z) has to meet certain requirements. (3.49) for n = 1 means

Therefore evaluation of (3.54) for n = 1 gives

S({xy, x}) = S1(w2)S1 (1) = —Ly(aa)Li(21) for 2 —xy e RT\TV_.  (3.58)

Since this does not depend on the choice of indices, we conclude that*’

~ ~

[Li(x), Li(y)]- =0 for 2 Xy. (3.59)

By (3.47), finally, we have

Ula, A Ly(2)U(a, \) ™" = Li(Az +a) . (3.60)

Summing up:

ﬁl(m) must be a hermitian, scalar, local operator field.
Conversely, these properties of Lj(z) guarantee that (3.46), (3.47), (3.49), and (3.53)
are fulfilled on R‘;” by?"

SHxy,. ., m,) = e (Sl(:vl) Sl(a:,,)> forv=2,3,... (3.61)

Draft, March 26, 2009

INote that, Jch = a9 —x1 ERI\V_>2; —29.
50(3.49), for example, is obvious for n = 1 and therefore follows for n = 2,3, ... — if restricted to
R;ﬂ" — because

Y STM)ST (X \ M)

M'CXpy1
= S1(zn1) Y STOHST(X \ M) + D ST(M)ST (X \ M)* Sy (2p41)"
MCX, MCX,
holds on the subregion of R;t(nﬂ) characterized by: a:,olﬂ > x? for j =1,...,n. For (3.53) see

also (Bogoliubov and Shirkov, 1959, Sect. 18.5).
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if T is a (linear) covariant time ordering operation, i.e. fulfills the conditions

vV

(3.62)

T <§1(x1) e S’l(xy)> = Sl(xﬂ) e Sl(xw) for 7 € S, with x?rl > >0

and

Uy(a, A)T (51(x1> . s}(%)) Up(a, A)"L =T (s}mxl ta)--8i(Aw, + a)>
(3.63)

(on all of R" for v = 2,3,...). Therefore:*!

On the restricted region Ri” there is no other choice for Sn(xl, ey T)
than (3.61).

The difficult problem is physically correct extension of Sn(xl, ..., Ty,) to all of RY"
(n=2,3,...).

If the Sy(xl, ...,x,) are known for v < n then S’n+1(:x1, oy Tpyr) is fixed by
(3.54) even on the complement of

Ri(n—‘rl) déf (.1'1, c. >$n+l) € R4(n+1) L1 =T = ... = .’L'nJrl} y
since there must be a pair z,,z,, € {21,..., 2,41} for which z, —x, € R* \ V_ unless
T =Tog=...=x,. In other words:
If S, (x),..., 5'”(:1:1, ..., Ty,) are fixed then gnﬂ(xl, ..., Tpy1) s unique up
to addition of an operator field A, .1(z1,...,2,4+1) which is quasilocal,
ie.

Supp An+1($1, ceyTpa) C RA(+1)

Further details: Similarly to (3.52), starting from

So(g2)*So(g1 + g2) = So(g1)

instead of (3.51), we get

s R
(3.50) = @ (So(gz)* =0 for (z,y) € supp g1 x supp gz

lo=g1+02
and hence
Z S(X, \M)*SH{y}UM)=0 ify—zecR*\V_ for somez e X,,, n>0.
MCX,
Therefore, the difference

D(Xn:y) & R(X,50) — A(Xnsy)

Draft, March 26, 2009

S1Recall that (3.53) implies (3.54).
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of the retarded function

)= Z “S({y}uM)

and the advanced function

Xpy) X Sl U \ My
CXn

vanishes whenever one of the arguments x,, is spacelike w.r.t. y. If all the S(X,) are
known for all v < n then also D(X,,; x,41) and S(Xn+1)_A(Xn; Zp41) are known and
determination of S(X,,41) is equivalent to physically correct splitting of D(X,; 1)
into an advanced function A(X,;z,+1) and a retarded function A(X,;2,4+1). The
main difficulty of such a splitting is to get A(X,;z,+1) and R(X,;z,+1) Lorentz
covariant (see (Steinmann, 1963; Epstein, 1966)).

Note that one may work with Sy(z)~" instead of Sy(z)* and use (3.57) instead of
formal unitarity (see (Epstein and Glaser, 1973, Sections 1.2 and 2)).

Let us use this to analyze a given formal power series So(g) that fulfills all the
BOGOLIUBOV-SHIRKOV requirements.

Let Ag, ..., A, be quasilocal operators and let T be a (linear) time ordering oper-

ation, defined for all direct products C composed of elements from {Sl, Ay, ..., An} ,

fulfilling the following requirements:

T<él($1>--~awj)62(y1a~--7yk)) =T<CA'1($1,«--795]‘)> <02(yla---ayk)>
if sup{x?,...,x?} >sup {v),.. ., 90},

1(Crarem) T(Coloneow))) =

I
H H N
)
C
=
IS
<
[\
Ny
=
=
D

Uo(a, A)T(C(xl, . ,x,,)) Uo(a, A)~t = T(C’(Axl Ya,... Az, + a)> . (3.66)

Exercise 56 Show the following:

1. The A,, are local relative to 5’1 in the sense that

x Xy = [Sl(x),ﬁy(yﬂ,...,yw)]i:O VresS,.

2. The A,, are local relative w.r.t. each other in the sense that

o Xy = [/1”(1:1,...,x#),fly(yﬂ,...,yw)]i:0 Vres,.
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3. The A, transform according to

U(a,A) Ay(z1,...,2,)U(a, Ay = A, (Azy +a,..., Az, +a) VY(a,A)ePl.

Then we define

.....

where
SRt
def (exp </ Si(x)g(z) dz +Z/Ay(9€1, c2)g(x1) - gu() dxl...d%>)

.....

ments if also

/L,(xﬂ, e Ty) = A,,(xl, e Ty) = —/L,(xl, ce Tyt

VresS,,v<n (3.67)

holds.

Now assume

Sz, ... x,}) = S’Z; i {z,.m}) forv<n. (3.68)

------
Then, according to the above considerations,

Ans1(21, ., Tpga) « g<{$1’ e Tpg1}) — SATQ An({$1a ey Tng1}) (3.69)

.....

Exercise 58 Show that, with A,,; defined by (3.69), the statements of Exercise
56 and (3.67) hold also for n replaced by n + 1.

If we can extend®® the T-operation to all direct products éj composed of elements

~

from {Sl,flg, e ,An+1} in a way respecting (3.64)—(3.66) we get (3.68) for n re-
placed by n + 1. This way we are lead to the following BOGOLIUBOV-SHIRKOV
Draft, March 26, 2009
2In general, it is not at all obvious that such an extension is possible. Up to now, nobody

could provide a proof for existence of the covariant T-products for interacting WIGHTMAN fields
(compare (Steinmann, 1963; Epstein, 1966) to see the difficulties).
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conjecture:

Let So(g) be a formal power series fulfilling all the BOGOLIUBOV-
SHIRKOV requirements and let 7" be a (linear) covariant time ordering op-
eration fulfilling (3.64)—(3.66) for arbitrary muliple direct products C; of
Sy with itself. Then there is a sequence of quasilocal operators Ag, Ag, .
and a suitable extension of T" for which

So(g) = T<exp(f dzS, (z)g(x) + fl(g))) ,  where
A(g) o Z/Ay(ml, ey xy)g(xy) - g(xy,) day - - - day,

holds in the sense of formal power series in ¢ .

/Sg x—%/ﬁl z)dz + A(g)

is to be considered as renormalization from the BOGOLIpBOV—SHIRKOV point
of view. Without correct choice of the counter terms A(g) transition to the
adiabatic limit (g(x) — 1) will typically not be possible (recall Exercise 52).

The transition

3.3.3 Generalization to Nonlocalizable Test Spaces

As already pointed out in 2.2.2, there is no physical justification for the technical
requirement that (fo(g) be defined for all tempered g. Therefore other test spaces
should be taken under consideration. Convenient families of test spaces, parameter-
ized by s > 0, are the following:**

S3(Rin) & U S=4  (inductive limit)
A>0
Jo (R4 & ﬂ G (projective limit) ,
A>0
where

§%Wﬂ®%¢e&W®ﬂmmw<mVNeN}

the topology of S*4(R*") being given by the family of norms®*
def L)< —sé [ (6) /5
el N = Sup. (1+ &))" sup (A+ ) e o9 ()

4
aezi"

Draft, March 26, 2009
P3EFIMOV (see (Efimov, 1968) and references given there) used slightly different test spaces.
>4 We write

n 3

n 3
‘f—(xla“wxn)» Hi'”: ZZ‘TV ’ pf:zzpﬁxff
v=1pu=0

v=1 pu=0
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Note that
$1 < 89 = S K52,

where S*1 < 5% means that S°' is contained in S*? as a set and that the topology
of S is finer than that induced by 5*2.

The elements of S*(R*") resp. J*(R*") may be characterized by their Fourier trans-
forms

o)™ 2y [ ola) et as

as follows:
peSR™) — (FA>0: g <0V NeN),
pe SR —= (VA>0: [|g)|MV <coVNeN
Here .
~|A,N def 1y ~ (&) ~
61 sup sup g, ((4+ 107 1ol ) 50
PERI ezZin
la|<N
where
gs(t) © sup g t|*  for t € R'.
HEL
Note that

se s

e Feill” < gs([t]) < e yie R :

if s > 0, while

<1.
oo else.

This implies that S*(R*") contains only entire analytic functions if s < 0 and that
p € S°R"™) <= ¢ € DR"™) |, J'RY =0.

Moreover, the elements ¢ of S*(R?") are seen to be analytic in a complex neigh-
borhood of R* (depending on ¢). Finally, as shown by Roumieu (Roumicu, 1960;
Roumieu, 1963) (see also (Gelfand and Schilow, 1962, Kapitel IV)):

s>1 = S*R")NDR*™) dense in S*(R*).

Draft, March 26, 2009
and use standard multi-index notation:
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Therefore the standard definition of support may be applied to generalized functions
on S*(R*) if and only if s > 1. For the spaces J*(R%") the situation is quite similar.

For s < 1, if one wants to test by functions ¢ € S*(R*") whether a given F €
S5(R*™) is ‘localized” within a closed subset M of R*™ | there is essentially only one
possibility:

Check whether
F (9011) — 0

V—00

holds for every sequence 1, s, ... with

suitably
o, — 0 onM.

V—00

The questions is just how to specify what ‘suitably’ should mean, here.

Let us interpret ‘suitably’ as ‘S®-like’ in the sense that all the ¢, are elements of

Ss (R4n) and55

<¢VSE<>GO on M) & (3A>0: H%H;%—mvNGN),

V—00

where®® .
s,M def . —|&| x—s@ |, (&) (5
ol 9 sup (1 + 7)™ sup (A + )~ Hla= @) (7))
’ geM N

e
anf”

Let F € S*(R*) and M = M C R* . Then M is called a quasi-support of F
with respect to S*(R*") if and only if

(gol,ss_—hkfo on M) — F(p,) — 0

V—00 V—00

holds for arbitrary ¢, € S*(R*). A neutral scalar quantum field ®(z) with domain
D is called essentially local with respect to S*(R*™) if and only if {(z,y) € R*xR* :
x—y € V} is a quasi-support of <\Ill | [®(z), @(y)]_\IJ2> with respect to S*(R*") for
all U, Wy € D

For s > 1 every quasi-support w.r.t. S* contains the (ordinary) support as a subset,
whereas for s < 1:

M, quasi-support of F

de>0: My C U(M,) } =— M, quasi-support of F'.

Draft, March 26, 2009

SSEFIMOV required the @1, o, ... to be what he called projecting sequences with support M (see
(Alebastrov and Efimov, 19741) and references given there). This especially means that the analytic
continuations ¢, (%) of the ¢, (#) have to converge uniformly to zero in the region M + iR*" and

uniformly to one in every region of the form K + iR*" with K a compact subset of R*" \ M .

*Note that ||<p||i{]’R;,n = |lgll%) v » so that every element of S*(R*")" is localized in R*", at least.
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This is why we speak about ‘quasi’-supports. For instance, {0} is a quasi-support
of F(z) = e~ I#I” with respect to S**(R*). Thus, obviously, a quasi-support is not
a domain of strict localization, in general. Nevertheless the PC'T' theorem and the
spin-statistics theorem could be proved for fields which are only essentially local®”
with respect to SO(R?) (see (Liicke, 1934; Liicke, 1956)).

Now it is evident how to generalize the BOGOLIUBOV-SHIRKOV theory:

Formulate everything — except BOGOLIUBOV-SHIRKOV causality — with S* in-
stead of S and replace BOGOLIUBOV-SHIRKOV causality by the requirement of gen-
eralized BOGOLIUBOV-SHIRKOV causality:*®

{(z,y) e R* x R*: x —y € V| } is a quasi-support
)
(

f
¢ dg(x)

og(y)

(550( )50(9)* with respect to S*(R®).

|g:0

Naturally, we call M = M a quasi-support of F' € J*(R*")’ with respect to J*(R*")
if and only if
<gol,Jﬂ(>80 on M> = F(¢,) — 0,

V—00

where
like def

(e, 0 onbr) 4 (VAN >0: el —0) .

V—00

Now, one would like to have a convenient criterion for V. being a quasi-support.
For tempered distributions we have the following.

Theorem 3.3.1 Let L(p+iq) be an analytic function on the tube R*+ iV, having
the following property:
For every n € V. there is a polynomial P, for fulfilling

IL(p+iln+a)| <|P(p+ia)] VpeR' aeV,.

Then there is a tempered distribution F(x) with

F(p) = lim [ L(p+i(e,0,0,0))¢(—p)dp V€ SRY).

e——40

For this distribution o
supp F' C V.

Draft, March 26, 2009
°TIn spite of the — generally misinterpreted — result of (Borchers and Pohlmeyer, 1968) there
are examples of nonlocal tempered fields which are essentially local w.r.t. S°(R*), as shown in
(Biimmerstede and Liicke, 1975, Sect. 5).
%8We choose the spaces .J* since we are primarily interested in the case s = 1, here. For the
general study of axiomatic field theory the case s = 0 was the real challenge.
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Conversely, for every tempered distribution with such support there is a unique func-
tion L of the type specified above, namely the Laplace transform

Lip+ig) = (2m)2 / F(z) etie+ins g

Proof: See (Streater and Wightman, 1989, Theorem 2.8).
An immediate consequence of Theorem 3.3.1 is
supp Aret (fﬂ) C er

for the retarded commutator

def . » e—ipac
Aret(@) = lim (2) / (P +ie)? — p? —m? -

Note that, by Cauchy’s integral theorem,
Ap(z) = At () — A_()
for Ap(z) as defined in (3.28) and A_(x) as defined in (3.30)/(3.31).

Exercise 59 Let {/‘a}ani be a family of complex-valued Borel measures p, on

R* and assume

sup A~lelgtse /(1 + ||z)) 7 || (dz) < 0o for A > 0 large enough,

4
a€Zy

where |p| denotes the variation of the complex-valued measure p :

mmgm{

/ fd,u’ : f: E — C measurable and |f| < 1} (3.70)
E

(compare (Halmos, 1950, p. 124)). Show" that

F@)= 3" Dipal)

4
a€Zy

converges in the weak topology of J*(R%)" and that

M = () supp pia

4
an+

is a quasi-support of F with respect to J*(R?).

Draft, March 26, 2009
2See (Liicke, 1984) for a proof of the converse of the corresponding statement for S*(R?).
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In the nonlocalizable case, a useful substitute of Theorem 3.3.1 is the following.

Theorem 3.3.2  Let s > 0, let L(p + iq) be an analytic function on R* + iV, |
and assume that

sup  (|lqfl dist (g, 0V )4 e~ (5™

pHigER4 iV,

holds for sufficiently large A > 0. Then

F(p) = lim L(p +iq)

e——+0

converges in the weak topology of ﬁ(R‘l)’. Moreover, every closed cone with apex
at x = 0 and containing V. \ {0} in its interior is a quasi-support® of F(x) with
respect to J*(R*) .

Proof: See (Fainberg and Soloviev, 1992, Theorem 4). g

Moreover the following result is useful:
Theorem 3.3.3 Let® s >0 and let {x € R*: 2° > 0} be a quasi-support (w.r.t.
J5(RY)) of F(z) € J*(RY) . If F(x) is Lorentz invariant then also Vi is a quasi-
support of F(x).

Proof: See (Biimmerstede, 1976, Theorem 4.7). g

Let V(t) be an entire analytic function of order 5, i.c.:

3p>0: supe ™ V(2)| < 0. (3.71)
zeCt
Then, by Theorems 3.3.2 and 3.3.3,
TN Sl ¢ K
M%) tim o) [ e (372

is an element of J*(R*) with quasi-support V. . If, in addition,

V() =1 (3.73)

Draft, March 26, 2009
60Presumably, V itself is a quasi-support of F(x) — as obvious for s > 1. A generalization of
Theorem 3.3.2 for s = 0 was proved in (Soloviev, 1997).
61 Actually, Theorem 3.3.3 is also valid for s = 0.
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then also
A¥(z) € AV (2) - A_(z) (3.74)

()
_ —4 "
B eliIEO(QW) / p? —m? —ie dp
is a well defined element of J*(R*). If V(¢) is even of sufficiently fast decrease, e.g.
sup t* [V(t)| < o0, (3.75)

teR!

then there is a ‘canonical’ definition for powers of the modified FEYNMAN propagator
A¥(z) using FEYNMAN parameterization

1 ' ' 5(1_51_“-_571)

= — 1!
Cc1-:Cp (TL 1>/; dgl /0' dfn (0151 + .. Cngn)n (376)
1f1+61€1++Cn€n7éovgl,,£n20

(see (Alebastrov and Efimov, 1973, Sect. 4.3)).

Proof of (3.76):

1 > o 1
L dé, - - s,
nley---cy /0 o ./0 : (14+c1&+ ...+ &)t

/mdgl../ d{n/ dA 1+c’\1§1i1 +c_n§:))n+1
R
= /0 dgy - / dg;, / A= 1+C1 gfl ";chlzi)nﬂw
/mdgg.../o dﬁn/ A ~ +(61£1§1 +cn2))n+1

61 gn)

Therefore, if we denote by T3, the time-ordering resulting by replacing — after formal
application of WICK’s theorem — the products of the ordinary FEYNMAN propagator
Arp(z) by the ‘canonical’ products of the modified FEYNMAN propagator AX(z),

SY(g) TV (exp ( / Si(z) g(x) dx)) for g € J*(R) (3.77)

fulfills all the requirements of the generalized BOGOLIUBOV-SHIRKOV theory.%?

Draft, March 26, 2009
62Generalized BOGOLIUBOV-SHIRKOV causality can be proved by Theorem 3.3.2 and the

5 (S(9) ¢ : . .
S * Alebastrov and Efimov, 1974,
9) \ agy) 9)

lg=0
Sect. 7). Of course, counterterms have still to be added if the adiabatic limit ¢ — 1 is to

exist.

ALEBASTROV-EFIMOV analysis of
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Unfortunately, as a consequence of the PHRAGMEN-LINDELOF theorem (see,
e.g., Theorem 4.1.1 of (Liicke, ftm)), (3.71) and (3.75) are incompatible with each
other for s > 1/2. For s < 1/2 there are plenty of entire functions V(¢) fulfilling
both (3.71) and (3.75) (see (Gelfand and Schilow, 1962, Kap. IV §8)). This is why
EFIMOV (see (IKonig, 1993) and references given there) suggested to use test spaces
of entire functions in order to ‘regularize’ the perturbative expansion of the S-matrix.

For s = 1 we may still have
sup t?*V(—t) < oo (3.78)

teR4

in addition to (3.73). Take

for instance. Now, the expressions resulting from the ‘canonical’ definition of powers
of A¥(x) — thanks to transition to Euclidean momenta — are well defined, if only
(3.78) holds. EFIMOV used this for the definition of ‘regularized’ solutions of the
generalized BOGOLIUBOV-SHIRKOV theory® for J'(R?) — motivated by suitable
quantization of formally nonlocal field theories (Efimov, 1974).

Draft, March 26, 2009
63For generalization to gauge theories see, e.g., (Moffat, 1990; Cornish, 1992) and references
given there.
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Chapter 4

Quantum Electrodynamics

4.1 The Free Electromagnetic Field Operators

4.1.1 WIGHTMAN Theory

Axioms

The WIGHTMAN azioms for the free electromagnetic field F#(z) follow from those
for the neutral scalar field by straightforward adaption:

0. Assumptions of Relativistic Quantum Theory:

The same as in 2.2.1.

[. Assumptions about the Domain and Continuity of the Fields:

The field operators F*(z) are hermitian operator-valued, tem-
pered generalized functions with invariant domain D C H;
i.e. linear mappings
. S(RY)Y — L(D,D)
o = Prle)= [ U)o ds

J/

~
formal

for which all the
/<qf | FW(;U)\II> o(r)da <\1; | ﬁW(<p)xy> WeD,

are continuous in ¢ € S(R*), where D has to fulfill the following
conditions for ¢ € S(R*) and (a,A) € P :

A

QeD, UADCD, F*@DcCD, F*™@) =F"())D.

139
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II. Transformation Law of the Fields:

The fields transform according to
Ula, \) ' F"(2)U(a, A) = AAGF? (A (z — a))  V(a,A) € PL.

Remark: Recall that U(a, A)VU is to be described w.r.t. the coordinates
2’ = A~ (x — y) in exactly the same way as VU is to be described w.r.t.
the coordinates x and that the field expectation values should transform
like the classical fields (see, e.g., Eq. (2.9) of (Liicke, edyn). Therefore:

<U(a, AT | B (Az + a) Ula, A)> — AZAY <qf | BB (z) \11> .

III. Local Commutativity (Microscopic Causality):

The smeared fields F* (1), F*%(p,) commute whenever the supports
of the test functions ¢y, o € S(R?) are spacelike with respect to each
other. Formally:

e Xy = [F"™(z), F%(y)]_ =0.

Again, the vacuum vector €2 is required to be cyclic with respect to the algebra
Fo generated by 1D and the smeared field operators (), ¢ € S(RY) , u,v €
{0,1,2,3}. Finally, the field operators have to fulfill the free MAXWELL equations:

,F"™(x) = 0, (4.1)
€ apF?(z) = 0. (4.2)

Essential Uniqueness of the WIGHTMAN Theory

Using the results of (Oksak and Todorov, 1969) and (Pohlmeyer, 1969) one man
prove? the following variant of the Jost-Schroer theorem (Theorem 2.2.18):

Theorem 4.1.1 The WIGHTMAN theory of the free electromagnetic field,
as described above® is unique up to unitary equivalence and up to some common
constant factor of the field operators, if D is chosen to be the smallest linear subspace
of H containing ) and being invariant under all the smeared field operators.

A realization of the WIGHTMAN theory of the free electromagnetic field will be
given in 4.1.3.

Draft, March 26, 2009
L As usual, we define

—1 if (u,v, 0, B) is an odd permutation of (0, 1,2,3),

ot { +1 if (u, v, @, ) is an even permutation of (0,1,2,3),
Cuvaf =
0 else.

2See also (Fredenhagen, 2001, 111.4).

3As pointed out by D. Buchholz (private communication) it is sufficient to require the validity
of the wave equation for every component of the field tensor rather than the full set of MAXWELL
equations.
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Vacuum Fluctuations

Although we will see that
<Q | FW(Q;)Q> —0,

as to be expected, cyclicity of €2 implies that the 2-point functions
(@] P (@) P (y)2)

cannot all vanish.* Therefore the variance of the field strength is nonzero already
in the vacuum state. This is due to vacuum fluctuations, which also cause spon-
taneous emission of photons from atoms in excited states (see, e.g. (Baym, 1969,
S. 278 ff.)) and may be experimentally verified by the so-called Casimir effect (see,
e.g. (Itzykson and Zuber, 1980a, Section 3-2-4)).

The permanent presence of perturbations like those connected with vacuum fluc-
tuations is one of the main problems of quantum field theory.

4.1.2 Problems With the Quantized Potentials
Desirable Properties

Just as in classical electrodynamics it is convenient — and for coupling to the charged
matter fields also necessary — to introduce potentials A*(x) which we should like to
fulfill the following requirements:’

(i) The A(x,t) are operator-valued tempered generalized functions with invariant
dense domain Dy C H.

(ii) There is a nondegenerate® continuous sesquilinear form (. | .) on H w.r.t. which

Draft, March 26, 2009

4This fact implies interesting restrictions on the joint measurability of different field components
(Bohr and Rosenfeld, 1933) — a necessary supplement to the Heisenberg uncertainty relations of
ordinary quantum mechanics.

5See also (Strocchi, 1977) and (Liicke, edyn, Sect. 2.3.2). Of course, it would be nice to have
Ds=Dp =D and (.|) = (.|.). By Strocchi’s Theorem (Theorem 4.1.2), however, this is not
possible. While it is easy to see that quantized potentials can always be constructed in some bigger
space with indefinite metric — even in the noninteracting case (Bongaarts, 1977) — there are almost
no physical hints on which properties can be expected for such auxiliary field operators.

In general a quadratic form (. |.) on H x ‘H is called nondegenerate if the mapping

HoUr— (V])eH
is a bijection. For Hilbert spaces H this is equivalent to:

(@|®)=0Vd' eH = @=0.
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the A(x,t) are hermitian:”
(cb1 | Ax, t)<I>2> - (A(x,t)q>1 | <I>2> V®,, By € Dy (4.3)
(iti) There is a representation V(a, A) of PL with

DV(a,A) - RV(a,A) =Da (4.4)

which is strongly continuous w.r.t. (. | .), unitary w.r.t. (. |.), i.e.
(@ 1V(@. M) = (Va,A)'2) [ @) Ve, @ €Dy, (45)

and transforming the A(x,t) according to

Via, A)PA(x, )V (g, A) = (Ax)", A (A3 (2 — a)) . (4.6)

(iv) There is a vector 2 € D4, unique up to a phase factor, fulfilling

Q) =1 and V(a,A)Q=Q V(a,A)ePl. (4.7)
(v)
Xy = |A(x1),A"(y)| =0. (4.8)
(vi) R
DA (z) =0 Yve{0....,3}. (4.9)

(vii) There is a linear subspace D of D4 fulfilling the conditions
<<I>1 | aﬂA(x,t)%) —0 V&, b€ Dy, (4.10)

F"(2)Dp C Dp 5 V(a,A)Dp Vv €{0,....3} ,(a,A) € PL, (4.11)

and
QeDr (CDsCH). (4.12)

where

Ay N def o Ay v A
F(z) = 0"A”(z) — 0"A(x,1), (4.13)

(vii)
/ <<I>1 | V(a, 114)@2) e udg =0 Vp e RI\TV,, ),y € Dy, (4.14)

Draft, March 26, 2009
TOf course, we should like to take (. | .) = (. | .). However, as will be shown in Corollary 4.1.4,
this would be in contradiction to the other assumptions made below.
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(ix)
ALY

where Z, denotes the smallest linear subspace of D, containing €2 and being
invariant under all A(x,1).

(x) For every ® € Dp and every € > 0 there is a &’ € Zp with
(@— @ |®— D) <e,

where Zp denotes the smallest linear subspace of Dy containing €2 and being
invariant under all F}"(z).

If (. | .) were positive definite,

e = (1) .
He C DY Vi, A) T, Qand B

would give a WIGHTMAN theory of the free electromagnetic field.

No-Go Theorem
Theorem 4.1.2 (Strocchi) Unless all FZ"(:U) vanish, conditions (i)—-(x) imply

0, F (2)Q # 0. (4.15)

Proof: See (Strocchi, 1970). g
Lemma 4.1.3  Let D be a (complex) linear space with positive semi-definite sesquilin-
ear form (. | .) and let By, By € L(D, D) fulfill the condition
(cI>' | é@) — <B2q>’ | @) VO, € D.

Then
def

BiDgy C Doy = {® e D: (d|D)=0}.

Proof: By means of Schwartz’ inequality (see (Strocchi and Wightman, 1974);
Lemma 2.2 and application). i

Corollary 4.1.4  Unless all Fzy(x) vanish, conditions (i)—(x) imply that (.| .)
can be neither® positive definite on Dy nor positive semi-definite on D 4 if

(cp | 9, F" () cp) —0 V®eDy.

Draft, March 26, 2009

8By (4.9)—(4.13) positive definiteness on Dr would imply 8MF§V () = 0, in contradiction to
Theorem 4.1.2. The case of positive semi-definiteness on D 4 may be reduced to the case of positive
definiteness via factorization, by Lemma 4.1.3.
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GUPTA-BLEULER Generalization

Gupta (Gupta, 1950) and Bleuler (Bleuler, 1950) realized that, fortunately, it is
sufficient to postulate positive semi-definiteness of (. | .) on Dp :

(®|P)>0 VP e Dp. (4.16)

Then assumptions (i)-(ix) guarantee that factorization® of Dy, V(a,A\)MDp and
F () \Dy by

Do & {® € Dp: (9] ®) =0}, (4.17)

gives a WIGHTMAN theory of the free electromagnetic field (compare last part of
4.1.3).

4.1.3 GuPTA-BLEULER Construction

Quantized Electromagnetic Potentials

As domain Dy for the quantized potentials we choose the set of all truncated se-

quences
AGB - {AOJAlu"‘aATL707O7“'} )

where
A() eC R An = {aul ..... H (pla s 7pn)}uj:O,1,2,3 ’

and
altorn (pyy L pp) = af R (pagy o Pan) €S (R3") Vres,. (4.18)

As inner product we choose

(Acs | Acs)
9] 3
dﬁf A_A + Z Z fo 7t SREED /‘Ln( )aﬁu‘l »»»» /'Ln( ) dpl N dpn
n=1 H1seey H'n:O
(4.19)

Then H is chosen to be the completion of D, with respect to this inner product.
Similarly to (2.23) resp. (2.32) we define annihilation operators a*(p) by

(@(p)Acp)y = a*(p)

(a*(p)Agg)"Hrt (Pl; e ,Pn—1> & Vnates ””_1(1% Pi,--- 7pn—1> forn > 1
(4.20)

Draft, March 26, 2009

9Factorization is possible thanks to Lemma 4.1.3.
0We use the identification (Agp)"* " (p1,...,pPy) = a*1H (p1,...,Pv).
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resp. creation operators a*(p)! by!'!

~ def
(a"(p)'Acs), = O,
~ def
(CL“(P)TAGB)“1 (p1) = -2 |P1| 9" é(p — p1)Ao,
Al N A N\ MLseees n def n
(@"(p) Aap)" " (p1, ..., Pas1) = 4> 2|py| g (p — py)-

-qHt 'LL\J\I """ #n+1(p17--'7p\77"'7pn+1)-
(4.21)

Then, thanks to the commutation relations'?

[a*(p), @ (p')T] = —2|p| g §(p — )

N w - 4.22
(o), (9] = a*(p)' ' (0] = 22
the quantized potentials'®
h def 2 o (—
Alple) = Ay (@) + Agy (@), (4.23)
1 e ~ _dav d
AP @ VEem P e (4.24)
po=+|p| 2|p|
M@ e [ aepyeire B )
po=—1p| 2|p|
obeying condition (i) of 4.1.2, fulfill the commutation relations'*
A @), A @] = —cominfe - o),
(+) (+) () (-) (4.26)
A + A + —
(AL (@), A0 @] = A @), A7 @] =0,
[AgB(x), Ag’B(g:')} = (g i — ). (4.27)

(4.27) directly implies condition (v) of 4.1.2. By (4.23)—(4.25) also condition (vi) of
4.1.2 is fulfilled. According to (4.20)—(4.25) we have to define

(Aa | Alp) < (Ags | 1AGg) | (4.28)

A coln def [ 2N
(nAGB)MV g (pb s 7pn) = <_gM1V1) T <_g#nvn)a e "<p17 oo 7p") ’ (4 29)
(ﬁAGB)o déf AO ) ‘

in order to fulfill (4.3) and (Q | Q) =1 for the vector

def
Q= {1,0,0,...}. (4.30)
Draft, March 26, 2009
" The use of —g"*t instead of .y, 1s necessary to yield the vector transformation property (4.6)
with (4.31) for the GUPTA-BLEULER potentials A*(z) = Ay (x).
12Compare (2.34).

3Compare (2.39), (2.40), and (2.43). For the physically correct choice of ¢ see Exercise 61.
MCompare (2.46), (2.47), and (2.62).
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Since 7 is unitary'® w.r.t. {. | .) the sesquilinear form (. | .), defined this way, fulfills
condition (ii) of 4.1.2, indeed. By

(V(a, A)AGB) A,

~ U M1y Hn
(V(a A)AGB> (pb s 7pn> (431)
def (p1+ +p")aAM1 T AM”V it (Ailph s 7A71pn

dpl dpn

Acs | A AgA, Ej b (P, Pa) +0o Pn 7
(A | Agp) = AoAp+ /a (Pr Py (P 7p>2|P1’ 2 |pn
(4.32)

we get a representation of PL fulfilling conditions (iii), (iv), and (viii) of 4.1.2.

Warning: For v # 0, the operators V(AV,O) are unbounded w.r.t.

(1)

Proof For every v # 0 there is a 1-photon state vector Agg fulfilling

(A | Agp ) =
HV(AV,O) AGBH2 def <V(AV,O) Acp | V (Ay,0) AGB> —14e, €>0.

Then, for
(AgB)Ml ..... g (pla ap’ﬂ)
e iiﬂl oL QMn i 21+€
def N(1+6)n+1a1(p1) at' (pp) ifn<14+N .
0 else,
we have'6

Field Operators
In view of (4.15) the simplest possibility to fulfill also condition (vii) of 4.1.2 is'”

Dp{@eDy: AL ()0 =0} . (4.33)

Draft, March 26, 2009
BW.r.t. (.| ) of course, 7 is unbounded.

16N0te that Z T)n“ =1.
€

"Then 9 AéB( )Dr C Doy Vo € S(RY).
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Then'®
Dp = Dcoul + Doy, where
. 4.34
Do & {cp € Dp: AGL(2)® = o} , (4.34)
and
(@|9)=0 Vde Dp, d € Dy. (4.35)

Since (. | .) and (. | .) coincide on Doy this shows that (. | .) is positive semi-definite
on DF .

Sketch of proof for (4.34):

Acp — PoowAgn € Doy with Poow = H(1 -17),
=1
where
- H1yeees Hn
(T]AGB) (pla ) pn)
ij j. place
déf ;0 a#l 77777 0 #n(pla 7pn)| 07| ‘ fOI‘j 17 , 1y
J
0 for j >n 1
Sketch of proof for (4.35):
(Agp | Ag) = (pCoulAGB | Zf’CJoulAGB) VAgp € Dp,

~  Agp € Doy <= Acp = (1— Pcou)Aas -

Exercise 60 Show that (9#121‘&%;) (2)® commutes with all the smeared field operators
S8 (x) on D4 and hence the latter leave Dy invariant.

One easily checks! that for every ® € D¢,y and for every € > 0 there is a ' € Z&ou
with (& — @' | ® — @) < €, where Z5° denotes the smallest linear subspace of
Dcou containing € and being invariant under all F Z‘ZB(x) with j,k € {1,2,3}. This
is because in Dgoy the topology induced by (. | .) is equivalent to that induced by

e’} 3
def 2 o dp; dp,
Il Acsll* = Ao + /|a“1""’“"(p1,--.,pn)l :

n=1 p1,..., pn=1
Therefore (4.34)/(4.35) imply that also condition (x) of 4.1.2 is fulfilled for F ;{ZB (z).
Draft, March 26, 2009

18 Dyg was defined in (4.17).
9Note that

axp
p-a— a=pxX
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Transition to the WiGHTMAN Theory

Let D’ denote the set of all equivalence classes
D' {[Acp] : Acp € Dy} (4.36)

of Dg corresponding to the equivalence relation

def

AGB ~ A/GB AGB - A/GB S DOO . (437)

Then, according to (4.35),

([Acn] | [Agp)) € (Acn | Agp) (4.38)

does not depend on the choice of representatives Agp, Axg € D and, by condition
(ii) of 4.1.2 and (4.34)/(4.35), and defines a positive definite inner product on D’.
Hence, the completion H' of D' w.r.t. (.|.) is a Hilbert space. The appropriate
representation of PJTF results from continuous extension of the operators®’

V'(a, A) [Ags] & [V(a, A)AGB} (4.39)
onto all of H'. Then, up to a constant factor,
Q' ] (4.40)

is the only element of H/ that is invariant under all V/(a, A) . The spectrum condition
follows from condition (viii) of 4.1.2. To summarize:

For 'H’, V’(a,A), and ' all requirements of the zeroth WIGHTMAN
axiom are fulfilled.

Next, we define the field operators:*!
() = [F j{:B(so)AGB] for & = [Agp] € D' . (4.41)

Now all the WIGHTMAN axioms for the free electromagnetic field are fulfilled, as
may be easily derived from conditions (i)—(x) of 4.1.2.

Corollary 4.1.5 There is a WIGHTMAN theory of the free electromagnetic field,
given by ', V'(a,\), &, and F'"™(x) , with

<Q’ | v (21) - - F/unun(mn)9/> _ <Q | Fg;: (21) - "Flf"'/"(xn)Q)

Acs
for all py,vi,. .., pn,vn €40,...,3}.

Draft, March 26, 2009

20Definition (4.39) is allowed by (4.11, (4.5) and Lemma 4.1.3.
2By (4.11), (4.3), and Lemma 4.1.3 this definition is allowed. The Fj; (z) were defined in
B

(4.13).
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Final remark: 9,A%.”(z) = 0 does not hold on all of D . Hence

OF (x) #0

Acs

(compare Theorem 4.1.2). However, the following statements are true:

0" € b’ (z = 0 onDy,
wooke @ T, !
O, F" (x = 070, A" (),
W ( LTS L Alp ()
9, <AGB B (@) | A’GB> AT O YA Al € Dp.

4.1.4 GuUPTA-BLEULER Observables

Agreement: By GUPTA-BLEULER observable we will always mean a
(. | .)-hermitian operator A € L(Da, D4) leaving D invariant for which
A’ defined by

AI [AGB] et |:A AGB] VAgg € D

(recall Lemma 4.1.3), is an essentially selfadjoint operator of the WIGHT-
MAN theory constructed as described in 4.1.3. We will call GUPTA-
BLEULER observables A and B equivalent if they induce the same
transformation of the equivalence classes:

~

A~ B & ([AAGB} - [BAGB} V Aas eDF) .

Gauge Transformations

By gauge transformation in** {H, (. |.),n, D, Q} we will mean transition from

. . N . . ATH .
one quantized potential A(x,t) to another quantized potential A (x) without chang-
ing the n-point functions of the corresponding field strength operators:

(1 B ) B (@) ) = (@] B (@) Bl (@)

Certainly, the latter is guaranteed if the connection between A(x,t) and A™(2)
is given by A*(z) = A(x,t) + 0"x(x), where y(z) is a (. | .)-hermitian tempered
field in {H, (. | .)} with invariant domain D4 . Not quite that simple is the gauge
transformation A ) o

Aig(@) — Ao) & Ai(a) + () (1.42)

Draft, March 26, 2009
22For a more general classification of gauge transformations see (Strocchi and Wightman, 1974).
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with
x) € VC(m)T / ((p)e o 4 e (p)ler ) P
) PO=Ip| 2p
—a’(p) for p =0, (4.43)
¢(p) = P
—WZp]a](p) for p=1,2,3.
j=1

A simple calculation shows that

Fj’;B(x) = Fj’;oul(m) for j,k € {1,2,3}
and*

(F@J‘ (p) - FY (go)) Dr C Doy Vg€ SRY. (4.44)

AgB oul

Hence, indeed, (4.42)/(4.43) is a gauge transformation. The index “Coul” is to
indicate validity of the equations

A%oul(‘r) - O’ (445)

3
>0 Aggula) = 0. (4.46)
j=1

Restricting the AZ_ () to the domain Dgey (compare (4.34)), which they leave
invariant and on which (. | .) = (.|.), we get quantized potentials of the free
electromagnetic field in a pre-Hilbert space with positive definite metric (radiation
gauge, the special case (4.45) of the Coulomb gauge, characterized by (4.46)).

The price to be paid for positive definiteness of the metric is invalidity of the
covariance condition (4.6) — for every representation V(a,A) — as well as of the
locality condition (4.8). This follows from (4.45) and the structure of the 2-point
function?!

. A i Ok

(Q | Aéoul(w)A’éoul(y)) =iC <5j - %) Az —y). (4.47)

(4.44) shows that, for j € {1,2,3} and real-valued ¢ € S(R*), Foh(e) and
Fgfml(go) are equivalent GUPTA-BLEULER observables, although not identical.

Draft, March 26, 2009

k
2 Note that p° é*(p) — p* & (p) = —p—p a"(p) for k € {1,2,3} and that, by (4.33) and (4.26),
0 LH
p

auAéB(@)Di C Doo -

070
24The T—term spoils commutativity.
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Special Observables

Using the commutation relations (4.22), one easily checks that

- N . . dp
Pon= [ o () aum) 5T (4.48)
°=|p| p
is the generator of space-time translations:
[a o B o fEH
i A" Acy (@) =0"Agy (@), (4.49)

Therefore, P(O;‘B is the GUPTA-BLEULER observable of linear 4-momentum specified
by R
Pep2=0. (4.50)

This is consistent with the interpretation of

—1
a*(p)ta,(p

as a GUPTA-BLEULER observable for

I number of physical photons with momentum p’ € f/p
im = .
Vp—{p} momentum space volume V,,

Remark: Given ¢ € S(R?), we always have
/&“(p)fdﬂ(p) o(p)dp D ¢ D for D = Dy as well as for D = Dy,

but not a*(p)'a,(p) = 0 on Dy .

Exercise 61 Show that the GUPTA-BLEULER observables ¢ P4 and

~ def € 0/2 el 30 10 [0v
Egp(z?) = 02 /: <go‘ﬁ975FAZB (x)FEGB (x) + 4gWFA’éB(x)FgGB (x)) sdx
are equivalent (not identical) if
A
=— =] . 4.51
=2 (%) oy

In the following ¢ will always be assumed given by (4.51), with €, and ¢ specified
by the used system of units®® (see Appendix A.3 of (Liicke, edyn)).

Draft, March 26, 2009
25In HEAVISIDE units: €¢) =c¢ = 1.
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Similarly to (4.49) one may show that

jGB = iJGB + SGB y where
- def . 1 . dp
Leg = / —a"(p)'p x=Vpa,(p) =5
pO=|p| 1 dp a 2p0 (452)
A def . ~ ~ P
Seg = i a(p)" x a(p) 5 ,
p°=|p| 2p°

is a generator of spatial rotations:

- A(E)H . A(E)H
[LGB,AGB (x)] = ixx VA (z),

L e - (4.53)
[e - Saa, AE;B ($)} = ieX AE;B (x).

Hence Jgp is the GUPTA-BLEULER observable of total angular momentum specified
by R
Jes2 =0.

Warning: ﬁGB and SGB themselves are not GUPTA-BLEULER observ-
ables since they do not leave Dy invariant!

This is consistent with the interpretation of

1 » 1 . . A
T (—a (p)'p ¥~ Vypau(p) +ia(p)" a(P>)

as GUPTA-BLEULER observable of

’ total angular momentum of all photons with momentum p’ € f/p
im =
Vo—{p} momentum space volume V}, .

Hence, the so-called helicity operator
L def P . . dp
ban i [P @) <am) 55 (454)
pO=|p| |p| ( ) 2p0

is a GUPTA-BLEULER observable for the component of angular momentum along
three-momentum.

n-photon states are called those represented by the elements of D4 which are
of the form
Agg =1{0,...,0,4,,0,...}

(compare 4.1.3). The GUPTA-BLEULER observable for the number of physical
photons is

- def . . dp
Non & — / i (p)a,(p) o2 (4.55)
p°=|p| : 2p°

(recall the comment to (4.48)).
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Remark: The expectation values for the field strengths in physical n-
photon states all vanish!

Every 1-photon state Agg = {0, 41,0,0,...} has a unique decomposition

AGB = AgB + Alé:B + AtGlB

with: ‘ A o
Alp € Deow,  Le p’ (Alp)’ (p) = (48s) (P) =0,
Mg D, e (48) (p) = £ (45:)"(0).
(Alig)’ (p) =0 forj=1,2,3.

One says:

ABL describes a transverse photon, A%y a longitudinal photon, and Al,
a teme-like photon.

Of course, the 1-photon state vector Agp corresponds to a physical state only if
Al = 0. In this case Agp and A&}, correspond to the same physical state.

The commutation relations

i|a ) Aas| =0, ile-am) Aa] - % (e x a(p)") (4.56)
show?® that the longitudinal (as well as the time-like) 1-photon state vectors are
eigenvectors of A\gg with eigenvalue 0. Moreover, we see that the transversal 1-
photon state vectors of the form

. : A dp
[ o) (o) -a) — ivealp) - alp)) 55 0.
P°=Ip| D
where: {el(p), ex(p), %} right-handed orthonormal basis of R®* Vp # 0,
p

(4.57)
with o € {+1,—1} are eigenvectors of A\gp with Eigenvalue o, hence correspond
to physical 1-photon states with helicity o. Obviously, every transversal 1-photon
state vector may be written as a linear combination of vectors of the form (4.57).

4.2 The Quantized Free DIRAC Field

Draft, March 26, 2009

26Note that A\ag Q2 = 0.
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4.2.1 LoRENTZ Transformations Characterized via Complex
2 x 2-Matrices

Every selfadjoint complex 2x2-matrix X may be written in the form

20— —x! +ix2)

X =a'r, = < | (4.58)

—xt —ix? 2%+ 23

with suitable € R*, where

def (1 0 def 0 -1 def 0 =2 def { —1 O
7'0—(0 1),7’1—(_1 0)77_2_(—i O),Tg—( 0 1) (459)

Exercise 62 Show that?’

A? = Tr(A) A — det(A) 1,

holds for all complex 2 x 2-matrices A.

Since®®
Tr(7,7,) =26, (4.60)
the coefficients in (4.58) are
1 ~
o = S Tr <TMX> . (4.61)
Moreover,
det (AXA*) = det (X) = 2"z, VA eSL(2,C) (4.62)
implies

o', = atx, if X' = AXA*.
Hence, by (4.61), for every A € SL(2,C)

ot — 2™ = (Aa)" ) ¥, (4.63)

v

Draft, March 26, 2009
2TThis is a special case of a well-known theorem by Caley stating for arbitrary n € N that

<CM(2) 4 Qet (M —X1,) forze (C) = cy(M)=0

holds for all n X n-matrices M .
28This is a simple consequence of:

1[7# ] :{5W if v € {1,2,3},
20 7t ™ fr=0

(compare (4.68)).
29 As usual, SL(2,C) denotes the group of all complex 2 x 2-matrices X with det X = 1.
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where

of 1
(Aa)', € 5 Tr(mAn A7) (4.64)

14

is a restricted Lorentz transformation,® Ay € LL, depending continuously on A.
Note that A +— A4 is a representation of SL(2,C) :

AAp = Aap \V/A, B e SL(2, C) . (465)

The subgroup of all unitary elements in SL(2,C) is*!

SUR)={Up: ¢ €R’, || <21}, Uy o exp (—z'T : g) , (4.66)
where the components of 7 are the PAULI matrices
7 for je{1,2,3}, (4.67)
fulfilling*? ,
ik = Ok + 1 Z ijﬂ'l (4.68)
and hence -

(T-9) =|pl” Ve eR®.

Exercise 63 Prove

UcpZ]lzcosM— 'T"'osinM

/L— Y
2 | 2

(4.66), and:*
Upr =Up = (¢' =@ V |¢|=|p| =2m) .

Draft, March 26, 2009

30Here we identify the active Lorentz transformations with their matrix realizations w.r.t. some
fixed orthonormal inertial system. The A € SL(2,C) with A4 = A for given A € Ll_ are determined
in (Macfarlane, 1962). That (4.64) defines restricted Lorentz transformations follows from the
fact that for every A € SL(2,C) there is a continuous path connecting A4 with A;, =1 .
31Note that det (e”) =T for J = J*, and: Tr(J) =0 m J=—-7- g
(4.67)
32 As usual, we define

dof +1 if (4, k,1) is an even permutation of (1,2,3),
€
€k1 = § —1 if (4,k,1) is an odd permutation of (1,2,3),
0 else.
Hence
{2+ 2" (ir") + 2°(im?) + 2 (i7%) : x € R},

considered as algebra over R', is isomorphic to the algebra of quaternions, generated by 7 % i

and j def 2 (as Clifford algebra; see (Choquet-Bruhat et al., 1978, S. 63/64)).
33This shows that SU(2) (w.r.t. its natural topology) — contrary to the rotation group — is simply
connected.
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Now we may easily show (recall Exercise 63), that for the unitary elements
Uy € SU(2) C SL(2,C)

the associated transformations Ay, are spatial rotations:

3
1 )
Ay, = exp (5 E ejle]k¢l> ,  where:

34

k=1
000 0 00 0 0

pud (0000 0| _d]o o 0 0

"0 00 —1 | T dp |0 0 cosp —sing ’

001 0 0 0 sinp cosp /| | (4.69)
000 0 00 0 0

13deft | 00 0 —1 12def | 00 —1 0

Plooo0 o T o1 0 o
010 0 00 0 0

Tk & ik for j > k.

Obviously, Ay, is the matrix (w.r.t. the right-handed basis in which ¢ = (@', ¢*, ¢?))
of a right-handed rotation, by the angle ||, around an axis oriented along ¢ .
Therefore:

AU(p = AU , <:> U(p/ G {+U¢,_U(P} .
Exercise 64 Prove that every positive hermitian element of SL(2,C) is of the
form
H,  exp (_gf . %) — cosh (g)i ~sinn () 7

p0 + 1 %
= -7
1+1/00

with suitable v € R? | |v| < 1, where:*

(4.70)

[\]

def o def 1

Xv = tanh ' |v| >0, 0% —— .
V1= Ivl

Moreover, show for arbitrary v, v’ € R3 with |v|,|v/| <1 that

H,=H, < Vv =v.
Draft, March 26, 2009
341t is sufficient to check the generators. The mapping Up — AUzp has all the properties of

a covering mapping (Pontrjagin, 1958, Def. 45). Therefore (recall Footnote 33), SU(2) is the
universal covering group of the rotation group.

tanh 1
35Note that tanh % = A Xy _ I cosh =

1+\/1—tanh2xv_1+1/bo7 _\/lftanhg.




4.2. THE QUANTIZED FREE DIRAC FIELD 157

Similarly (recall Exercise 64), for positive hermitian A € SL(2, C) the A4 correspond
to Lorentz boosts:

3 i
Ap, =exp <Xv Z TOJ%> ,  where:

j=1
01 0 0 coshy sinhy 0 0
o1 def 1 00 0| _ d|sinhy coshxy 0 0
“loo oo ay| o 0 10| (4.71)
0 0 0 O 0 0 0 1 o
0 01 0 0 0 0 1
gedef [ 0O 0 0 0 g3def [ O 0 0 O
™= 10 0 0] ™= 0 0 0 O
00 0 O 1 00 0
Exercise 65 Prove (4.69) and (4.71).
The so-called polar decomposition (for invertible®s A)
A=AVA-TA VA A (4.72)
—_—
unitary pos. herm.
together with (4.69) and (4.71) shows:*"
{Aa: AeSL(2,C)} = {Au,An, : @, vER?, v <1} =1L (4.73)

(for the last equality see, e.g., equations (2.39) and (2.37) in (Liicke, rel)).
4.2.2 Relativistic Covariance in General

Consider any relativistic quantum theory with state space H. Even if the rela-
tivistic symmetries are realized as Wigner symmetries, there is no reason, why these
should correspond to a true representation of PJTF . In this case, by Wigner’s theorem
(Theorem 1.2.1), one may choose for every (a,A) a unitary operator U(a, A) such
that®

{)\ U (ay, A0 (a, Ao)W : A € C} - {)\ U((al,Al) 0 (aQ,AQ))\If e C}

Draft, March 26, 2009
36For singular A the unitary operator AV A~=1A*~! has to be replaced by a suitable isometric
operator (see, e.g. (Bratteli and Robinson, 1979, p. 39).)

3TNote that det(4) =1 = det (\/A*A) =1.

38Here (a1, A1) o (az, As) def (a1 + Araz, A1As) is the group operation of 731 )
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holds for every pair of Poincaré transformations (ay, Ay), (ag, Ay) € PL and all ¥ €
H, since the action of U(a, A) is to be interpreted in the sense of (2.6) (with f
replaced by an arbitrary element of H). But this only implies existence of a phase
function ¢((a1, A1), (a2, A2)) € R with

U (((11, Al) o) (CLQ, Ag)) = €i(p((a1’A1)’(a2’A2))(j(al, Al)(j(ag, Ag) . (474)

Exercise 66 Show that the phase function ¢ in (4.74) is a 2-cocycle w.r.t. the
trivial representation 7(a, A) = 1 of P! in R, i.e. it fulfills the condition 6 =0,
where 60 denotes the coboundary operator defined by

(0™ f) (g1, - - agz—i-l) C 1 (91)f (g2 s Gnp1)+

+ Z(_l)yf(gh o Gy O Gut, - - 7gn+1> + (_1)n+1f(glv oo ;gn)
v=1

((Van Est, 1953, Eq. 25)). Moreover, show that ¢ may be eliminated by suitable
change of phase (U(g) — €™9U(g)) iff ¢ is a 1-coboundary, i.e. of the form

In this case, we still have
{)\ U(ar, M) U (ag, As) : A € C} - {)\ U((al,Ag o (ag,A2)> Y= <c}
for every pair of Poincaré transformations (aq, A1), (az, Ay) € 771 , l.e.
(a,A) — Ula, A) {)\ U(a,A): A e C}
is a unitary ray representation of Pjr :

Fortunately, according to Bargmann (Bargmann, 1954) the following holds:*’

Theorem 4.2.1 Let U(a, ) be a continuous™ ray representation of 771 m H .
then there is a continuous unitary representation U(a, A) of "' iSL(2,C) in H with:

U(a,\) = {A U(a,A): ) e c} Y (a, A) € iSL(2,C).

Draft, March 26, 2009

39See also (Varadarajan, 2007, Sect. VIIL5) and, for 1 + 2 dimensions, (Grigore, 1993). Ray
representations of the Galilei group may always be considered as true representations of some
central extension of the Galilei group (Levy-Leblond, 1963).

40Here continuity is to be understood in the sense of Condition (iii) of Definition 1.1.4.

4 As usual, iSL(2, C) denotes the group

iSL(2,C) = {(a,A) : A€ SL(2,C), a € R*}




4.2. THE QUANTIZED FREE DIRAC FIELD 159

In this sense, iSL(2, C) is more fundamental than P. :

If the symmetries which express — in the sense of special relativity
— the equivalence of all inertial systems are Wigner symmetries

then they are given by some*? continuous unitary representation of
iSL(2,C).

4.2.3 Dirac Particles

Massive Spin-; Representations of iSL(2,C)

The simplest non-scalar unitary representations®® of iSL(2, C) are of the form**

(Ofa, ) (o) & e WA (Rap) 5w ™ Vw2 p?, (A7)

[pY=wp

where m is some fixed positive mass and the representation space is the set of all
C?-valued wave functions x(p) with finite HILBERT space norm

def " p“U dp def
IxIl = X)) —ExP) 55, ou=T" (4.76)
0 m 2p
P =Wp

Since _
A*A # 1y,
the term pto, fulfilling
A pro, A= (Aa-1p)o, (4.77)

Draft, March 26, 2009

with multiplication
(a1, A1) o (az, A2) = (a1 + Aa,az, A1 As) .

Since SU(2) is simply connected (recall Footnote 33), (4.71) shows that the same is true for
iSL(2,C).
420f course, not all continuous unitary representations of iSL(2, C) are physically relevant.
43Gee, e.g. (Streater and Wightman, 1989, p. 15) for a characterization of all irreducible repre-
sentations of SL(2,C).

“Note that A1 (Ag)7".

(4%5)
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is needed to make the representation (4.75) unitary.

Sketch of proof for (4.77): With o* o g*o, = 1, we have

Tr(7y (Aa-1p) 0,,) = Tr(Tapu(Aa)*,o")
= 20, (A )"
w60 P u(Aa)'s
Tr(p,ot ATy A*)

(4%4)
= Tr(manA*pto,A)  for A=0,1,2,3.

Together with (4.60) this implies (4.77). g

Exercise 67 Show that* ptp, > 0 = pFo, > 0 and that the representation
(4.75) of iSL(2, C) is irreducible.

According to the action of Ay, , the components of the the operator J defined by
(4.75) and

~def . d o~ , 1
e-J= 1@U(0,U¢e)|¢:0:e- (sz Vo + 57 ) (4.78)
dﬁ"fi =~
= d;fé
are interpreted as observables of total angular momentum.
Exercise 68 For S given by (4.78) prove
g (e-8) A, = (Dpe) S VecR’, (4.79)

where 1590 denotes right-handed rotation by the angle || around an axis oriented
along ¢, and use this to determine the eigenstates of e - S for arbitrary e € R?.

(4.78) becomes especially simple for e = P,

bl
pd Py P g helicity operator . (4.80)
p| p|
Obviously,
~ 1
hx+(p) = i§Xi(p) (4.81)

Draft, March 26, 2009

45Check det(p*c,) and Tr(p*o,,) .
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holds for
X+ <|p| (cos v cos p ey + sindd sin p ey + cos v e3)> o Ages Aves (1)
[ 4eFcos?
B +etiZgind )
(4.82)
X— <|p| (cos v cos p ey + sindd sin p ey + cos v e3)> oo Ages Aves (1)
B e~ "% sin ¥
+e*7% cos ¥
(compare Exercise 68).
The helicity survives in the limit - — 0 (to be discussed at the end of this section)

in which, however, the representatlon of iSL(2, C) becomes reducible (neutrinos!).

The wave functions may be written in the form

= bs(p) X+ (P)

o=+

def 1 def 0
xX+(p) = He . Xx-(p) =He :
“p 0 “p 1
Then, by (4.77), the norm (4.76) becomes

> dp
b, —.
Il = \/Ei/' o 5

(4.75), (4.83) = (U@, A)x) () = Xpey Uy (P) Xo(p) , where:

where

Moreover,

(0 <o (g, ) (B)) ),

Proof of (4.86):

Ax(p Zb ) Axo(p

Zb HH,H AHP X0 (0)

“p

_ Zb H+pZ(H%§AH%) Xor (0)

oo
o

S Z(;(H AH, )g,abo(pl))x"’(p)' 1

w/
o’ P

(4.83)

(4.84)

(4.85)
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Exercise 69 Show for arbitrary A € SL(2,C) that*°

p def (Aglp)| — H-p AH, unitary,

0= w
P P 134 p

as to be expected (compare, e.g., Sect. 2.4.3 of (Liicke, rel)).

Positive Frequency Wave Functions

The transition

x(p) — (27) / X(p) e~ %
pO=wp P
would give a usable configuration space version of the above representation (local
transformation behavior). However, technically more convenient (for later inclu-
sion of anti-particles) is another, unitarily equivalent, representation in the HILBERT
space of 4-component momentum space wave functions

T (p) = bo(p)w("(p) (4.87)
o=%
with norm
N o dp
H\w)) def \/Z/w(,(p)y2 o (4.88)
— Wp
o=%
where
1 0
S(H » S(H »
W (p) & M 0 w(p) Y M 1. (4.89)
R BN e oo |
0 1
namely: ) ) )
(U(a, A)\I/(+)> (p) & e"an §(A) P (A—’Alp) , (4.90)
pV=wp
where p
def 0
S(A) = (0 A*_1> . (4.91)

Draft, March 26, 2009

46Hint: First, show that (4.70) implies

2
(Hp/po) ‘pozwp = p“q—#/m Vp € R3

and therefore

Hoy = \/(H$A>_1<HW§A)*_1,

(see proof of (4.94)). Then recall the polar decomposition (4.72).
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Exercise 70 Show that

(4.90), (457) = (00, A)FD) (p) = 3~ ¥, (p) i (p
o=%

holds with o/ (p) given by (4.86).
(4.88) may be written in the form

~ ~ TN dp
v = / B (p) 2 ) (py T2
o ()= (p) 50

def [ T 0
a“:(é‘ T“)’

S(A) puaS(A) = (Aa-1p), o

where

since now the generalization

of (4.77) holds.

Sketch of proof for (4.94):

2(Aa-1)™, p¥
Tr (pVT)\AilTyA*il) .

Tr (75 (A g-1p)" 7 =
(A (Ag-1p)" 70) 450

(4.?4))
~ AT AT = (A yap)ir, .
YTl 4 (Aa-1p) 7
Together with (4.77) and (4.93) this implies (4.94). g

0 def 0 112 jdef o 5 0 TJ
’y_(]l2 0)7 ’y_rya_ Tj 0

(4.94) becomes equivalent to

With

S (A7) "S(A) = (Aa), 7",

thanks to
S(A) 7" =2"5(A)7.

By (4.90), (4.96) is equivalent to

YDy U(a, A)] = 0.
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(4.93)
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(4.95)

(4.96)

(4.97)

(4.98)
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Since U(a, A) is irreducible and*”

det (1* = det (a*p,) = m?,
(v p#)(4‘95) (¥'py)

(4.98) implies:*® )
(V*pu — m) U (p)po_, = 0. (4.99)

Conversely, (4.99) implies that W(+)(p) is of the form (4.87).
Sketch of proof:

(4.99)

Therefore, the set of admitted configuration space wave functions
N - d
U (2) < \/om (2m) 2 / T (p) e=ir 2—po (4.100)
pV=wp P

coincides with the set of all normalizable positive frequency solutions of the
DIRAC equation
(iv"0, —m) ¥(x) =0. (4.101)

Thanks to the factor v/2m in (4.100) we have

g

= / T () v (2)dx Vi’ e R. (4.102)
Proof:
/\Il(+)(x)*\lf(+)(a:) dx

. ) d
2m / T (p)* U (p) 2
pO=wp

(4.100

(4.109) Jpo=w,

. Ontty . d
— G (o) L Pr §(+) () P
o / I A

By (4.95) and (4.92), this implies the statement. g

Draft, March 26, 2009
“"Warning: The matrix v*p,, is not selfadjoint (compare (4.109)).
48The correct sign may be easily determined by checking the special case p = 0.
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Exercise 71 Show that
i < wp +m Y-p
S(Uyp) = - iR S(HL) =2 ooy TP
(Up) eXp< 4jk§l:1€gmv <p>, 2 5\ +wp+m :

and
v'9* S(A) = S(A") 4'y? VA e SL(2,C),

where S denotes the matrix resulting from substituting the entries of the matrix S
by their complex conjugates (i.e. S = S*1).

Discrete Symmetries

The so-called parity operator 3, describing total spatial reflection of the state,
is fixed — up to some irrelevant constant phase factor — by’

P'U (0, A)B=U (Pa, A7), Pr= (2 —x), (4.103)
and the requirement of unitarity (positive energy®). Note that
PAAP =TA,T = A, -1 VA € SL(2,C),

where
Tz < (2% %).

The natural choice is P2 =1, i.e.:

(PTH) (z) =1 vH (Pz), (4.104)
by (4.97).
Exercise 72 Show that
PP (=p) = wi (p)

and, therefore,

V) = VEmEn) Y [ Y be)e e e 5

0:“‘)I’U::I: 2p0
—  (PUO) @) = VI e [ Y h(puldple ih.

0
PO=wp o—t 2p

Draft, March 26, 2009

49For the necessity of both conditions see, e.g., (Martin and Spearman, 1970, Chapter 5 §1).
50By (4.103), anti-unitarity of 98 would imply P 1POP = —P° and thus <‘B\IJ | Po‘ﬁ\ll> =

<\II | ‘33_1]50‘)3\11> =— <\I/ | ]50\11> for the Hamiltonian P° = —i%f] ((2°,0,0,0), 1y) .
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Similarly the time reversal operator ¥ is fixed — up to some irrelevant constant phase
factor — by A A
T U (0, A)T = U (Ta, A7)

and the condition of anti-unitarity.”’ The usual choice is:*?

(TT) () = iv'y® UH(Tx) (4.105)

(recall Exercise 71).

Exercise 73 Show that

(o)

PP WS (4p) = o0’ W) (—

p)
and, therefore,

V) = VEm et [ Y ) e e 5

0_—
=Wp o=+

= (VD) (2) = V2m (27r)_3/2/ Z iob_o(—p)w((p) e " dp :

0_
=Wp o=+

Defining
o wofyl’nyy?’ —iatala?, (4.106)
and noting that (4.93) and (4.68) imply

-1 0
5 _ 2 : :
v = ( 0 +]12> in the representation (4.95),

we get the following relations:

S(A™)°S(A) =+, (4.107)

+2 if p=ve{0,5},
Ve =9 -2 fp=ve{l,23}, (4.108)

0 else,
x +~# for p € {0,5},
BY*
(") —{ o forpe {1.2.3) (4.109)
& def . d 1

S-e< Z@S(Uw)mz0 = 5757“7 ‘e, (4.110)
[S’ﬂ, —0. (4.111)

Draft, March 26, 2009
>IHowever, because of anti-linearity of ¥, Schur’s lemma is not directly applicable. Note that,
for the same reason, €2 = 1 does not depend on the choice of phase factor.

2
2In the representation (4.95): iyly? = — (T 02) '

0 7
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Exercise 74 Show that
Vi () 0 ()00 () (4.112)
is an ordinary current density and

V() E 0 (2)"9 09 10 ) () (4.113)

an ordinary azxial current density, i.e:%

VEEO,x) D (A", VE (A7 (@ — a)
VA% x) 5 Egu, V(2 —x), (4.114)
VEEY,x) - +gu V(2 %)

Final remark: Physically relevant are only the general relations be-
tween the y-matrices. Transformations of the type

Py = MM

where M is any unitary 4 x 4-matrix, are always allowed.’* E.g., for

1 /41, +1, L1 (+112 —Ilz)
M=— M= _—
\/5(—]12 +]12>’ V2 \+l  +1,

we get the standard representation

V= =0 =7 for j=1,2,3 (4.115)

of (Bjorken and Drell, 1964).

The Limit — — 0
!p!

According to (4.110), (4.99) is equivalent to

— (wp —mA°) T (p). .
|p| (wp —m1") ¥(p) (4.116)

~ 2p
Draft, March 26, 2009
%3 A more complete listing is given in (Itzykson and Zuber, 1980b, Sect. 3-4-4).

340f course, S(A) (recall Exercise 71) has to be defined accordingly, as well as the w(+)(0) :

A 1
Vel (0) =t70), $wiT(0) = 25047 (0).
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By (4.108) and (4.111) the latter is equivalent to validity of the following two equa-

tions:*®

~ A w A m 2
h(1++°) U (p) +Tp| (1++") TP (p) — Tplyo (1—+") v (p),
4.117)
R . w . m . (
h(1 =) U (p) = =22 (1 =7") U (p) + =97 (1 +9°) ¥ (p)
2|p| 2|p|
This implies .
Wi (p) = +5 05 (p) m
1 for Bl — 0, (4.118)
P (p) = —5 17 (p) g
where
V) = L1+ 8D (p),
=~ def a
U (p) € L1 —4%) ¥ (p)

Exercise 75 Show that

1+9°\" o 149 (1=7"\" ( ,1—79°
707“2( ) 7y + 7y

2

and hence

VE () = U () 7y 0 () + W7 () 0y 0 ().

Note that, in the representation (4.95), the equations
2 0 2 xL(P)
\I/H—) _ < ) 7 \1/(4') — ( 7
r (P) Yr(p) . (P) 0

with corresponding 2-component spinors xgr(p), xL(p), and

. P
h = 1 (T Il 0 o )
hold. Hence, for m = 0, the equations (4.118) are equivalent to the two so-called
WEYL equations

80@;{(17) = =7 VX(I)L(I') s 60®L(1') = +T7- VXQ)L(ZE) s

un dp (4.119)
/po_ Xr(w)(P)e P HQ_pO'

N[w

where: ®g,(x) o (2m)~

Draft, March 26, 2009
%The first of these relations results by adding (4.116) and (4.116) multiplied by 7 (from the

left). Recall that the helicity operator is h = % -S.
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4.2.4 Quantized DIRAC Field

Positive Frequency Part of the DirAC Field

Similarly to the electromagnetic field the DIRAC field is quantized by replacement
of the amplitudes b, (p) in (4.87) by corresponding annihilation operators Ba(p) (of
particles with linear momentum p and es-component 0% of the internal angular
momentum in the center of mass system of the particle):

W (z) = Vam (2m) 2 / > be(p)wi(p) oo B (4.120)

0
pO:Wp o=+ 2p

(compare (4.100)). Now, however, the b,(p) (respecting the PAULI principle) act

in a space
Ho < @H(”)
n=0
the n-particle components H™ of which are spanned by totally anti-symmetric

wave functions b,

bn(Pr1s Ont - -3 P, Or1) = sign (7) by (P1, 015+ . -3 Pny0p) forall me S, . (4.121)

The inner product is given by natural generalization of the norm (4.88):

ef dp
(= \/ > /Ilb (P1, 0155 Puy ) |2 H2 : (4.122)
O1,.. wp

Op=1

Since, the b, (p) are given by

(b p)b) = bilp.o).

<Bg(p)b) (w5 Pt O = V/nbu(P,0iP1, 01 Py On1)
(4.123)

6 we now have the anti-commutation relations

on their natural domain of definition®
01001, -2,

[Eo(p), 130,(p')} =0 .

Draft, March 26, 2009

56The natural invariant domain of definition for by (p) is characterized by the conditions

bor (P, ..., Pn) def bn(P1,01;- - ;Pns0On) € S(R?’") for fixed (01,...,0,) € {+,—}"

b, =0 for sufficiently large n .
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All linear relations of the 1-particle theory also hold for the quantized field. The
field operator for the current density produced by all particles (not anti-particles)
of charge®” q is

A def > * >

i) = g U () A0 ) () (4.125)

and transforms like a 4-vector field (compare Exercise 74) under the natural exten-
sion Up(a, A) of U(a, A) to all of Hy, fixed — together with the representation of
space-time reflections — by the requirements

Up(a, A)~ 0 ()0 ( A) = SV (Aya(e —a)) (4.126)
PP (@)P = VD0, —x), (4.127)
T ()T = iy IO (2 %) (4.128)
and R
Uo(a, )2 = B = T = Q (def 1 eHO = c) . (4.129)
consistent with the described 1-particle theory. Due to®
W5 (p) Y wyr (B) = B (4.130)
and (+) (+) d
[E @t i@ = [ b et (e) 5
o 2p°
P
(compare proof of (4.102)) the corresponding total charge is
A4y def [ ~1)0 ( d
QU = /j((;_) (r)dx =gq i Zb 2p0’ (4.131)
P =Wp g—4

independent of 2° € R.

The theory with only positive frequencies has (among others) the following dis-
advantages:

(P1): The current density (4.125) violates Einstein’s causality principle, i.e:

eXy £ i), )] =o.

(P2): In general, minimal coupling with an exterior field does not allow a solution
for which both the incoming and the outgoing free DIRAC field have vanishing
negative frequency parts.””

Draft, March 26, 2009
57¢ need not be the electric charge!

58(4.130) is trivial for p = 0 and therefore, by (4.89) and (4.97), also valid for p # 0.
%This is related to KLEIN’s paradox (see (Telegdi, 1995) and references given there).
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Local Operator Field

Obviously problem (P2) requires the additional introduction of negative frequency
solutions W(=)(z) of the DIRAC field operator equation. These can be constructed
using the 4-spinors

_ def
wi7(p) € y'wl) (—p). (4.132)

(o

Exercise 76 Show the following:%

1.
0 -1
(5) () — A e N I AT )
Wl (p)—S(prp> . _S<H@> el IRl ) R ERE S
+1 0

2.
S(Hi> S<HWP) _
3.
2 (m) () = (p;;;yﬂ )  with = o,
4
S o () ) - )
o,0'=%
Then

“ ls ~ ~N - d
V@) = vamen [ S depel e e R sy
P"="Wp 5=+
is indeed a solution of the DIRAC equation:
2 (5)
(,yﬂp# - m) v (p)|p0:—wp =0.

Draft, March 26, 2009

6OHint: To prove the second statement, exploit (4.94) for the special case p=0, A= He_ .
“p
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Sketch of proof:

(o ), o) 0

for
U(z) €I (2) + 0O () (4.135)

instead of WP (z) if the

(p) & 0d, (p)

bs
transform the same way as the b, (p) do.

Hence, in principle, one could identify the operators b,(p) with the operators
Bg(p) . However, a solution of the problems mentioned above will be achieved®! only
if the (fg(p) the are interpreted as annihilation operators for anti-particles, with
invariant domain Dy C H, (compare Section 2.4.1). Then the operators

~ ~ A

bo(p) = bo(p) @1, dy(p) = (~1)9 1 @d,(p),

well-defined on

def

def
Dp =

DO®DOCHD :H()@ﬁo,

fulfill the anti-commutation relations
da(p), b ()] = |do(p)", B (0)] | = 0 (4.136)

in addition to (4.124) and the corresponding relations for the czg(p). From this,
using the results of Exercise 76, one easily derives the anti-commutation relations

(#0@)  (¥@) ], = o,
(19@) (506@)) ] = G (1770, 4+ m)0),,, i (2.

(4.137)
Thus the solution (4.135) of the DIRAC equation

(iy"0, — m) U(z) =0, (4.138)

Draft, March 26, 2009
61See, e.g., (Seiler, 1978).
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is a local FERMI field, i.e.:
. - (*)
X = {(\If(x)) ,(xp(x')) } ~0. (4.139)
" +

Moreover, the anti- commutation relations (4.137) imply that

@) = g 0(2) 7 "0 (@) (4.140)

is a local BOSE field, i.c.:
e X' = [ji(x),70(")]_ =0. (4.141)
Normal ordering :.: in (4.140) means that FERMI creation and annihilation

operators have to be anti-commute, if necessary, irrespective of the actual anti-
commutation relations until no creation operator is on the right of any annihilation
operator.%?

Ji(z) is interpreted as observable of the total current density since, e.g., the
following relations hold:

/jg(a:)dx - QY / > (6 (p)bo(p) — ds(p )cia(p)>;i—;), (4.142)

(‘Ljﬁj(m) = T (4.143)
Jylx) = j’;j( )" (4.144)

Since
A, (0,x) =0, <80A(x)>lzo:o = —di(x), (4.145)

the anti-commutation relations (4.137) imply the canonical anti-commutation rela-

tions
(i60) . (3623) | = 0

. . * (4.146)
(i6600). (i620)'] = i)
r /4
Therefore,%
pr / U (2)*i0" W (z) : dx (4.147)
is the generator of space-time translations, i.e.
i {P{;, \if(x)} — 0" (x). (4.148)

Draft, March 26, 2009
62 Another effect of normal ordering, besides making Jjit(x) well-defined (as operator-valued distri-
bution, not just a quadratic form), is that the quantized current density — contrary to the classical
one — is no longer positive (compare remark on Corollary 2.2.14).
63Note that [AB,C]_ = A[B,C], — [A,C]. B.
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Final remark: Note that the local DIRAC formalism is physically con-
sistent only since anti-particles actually exist and are different from the
corresponding particles (e.g. having charge of different sign). Contrary
to this, local BOSE fields may well describe particles (e.g. photons) that
are identical with their anti-particles.

The Limit — — 0
|p|

Particle or anti-particles in states which can be created by applying (smeared ver-
sions of)

() = %(1 ) () (4.149)

or @R(m)* to the vacuum vector are called right handed. Similarly, particle or
anti-particles in states which can be created by applying (smeared versions of)

(1 —~°)¥(x) (4.150)

or Wg(z)* to the vacuum vector are called left handed.

The transition n ., 0 may be performed as discussed at the end of 4.2.3:

p|

form=0: [@R(aj),ﬁ] = %\TJ (x)
+
[ L(@), h] = —3V1() (4.151)
def , 189
where now: h < ( A5~0~3 U(z):.
Vi
(compare (4.110) and (4.117)). This implies:
helicity of right handed massless particles: +1/2
helicity of left handed massless particles: —1/2

helicity of left handed massless anti- particles: +1/2 (4.152)

helicity of right handed massless anti- particles: —1/2

4.3 The S-Matrix of Quantum Electrodynamics
(QED)

Let us choose HEAVISIDE units (in addition to 4 = ¢ = 1). Then, by
(4.51) and Footnote 25,
¢=1. (4.153)
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4.3.1 Naive Interaction Picture of QED

Asymptotic Description

For simplicity we consider the interaction of the electromagnetic field with the
electron-positron field, only. Then, in the GUPTA-BLEULER formalism, the inter-
acting system of quantum electrodynamics is asymptotically identified (in the sense
of 2.3.1) with the following ‘free’ system:

The basic HILBERT space (containing unphysical degrees of freedom) is
H="Hp ® Hagr, (4.154)

where Hp is the HILBERT space of the free electron-positron system as described
in 4.2.4 and Hgg is the HILBERT space of the GUPTA-BLEULER description of the

quantized free electromagnetic field given in 4.1.3. The DIRAC field \i/(x) will now
be identified with U(z) ® 1 and the GUPTA-BLEULER field A% (z) with 1@ Ay ().
Then the vacuum state vector

Q2 =0p ® Qg

of the total system is cyclic w.r.t. the fields A%y (z) , ¥(z), and W(z)| , well-defined
as tempered field operators with invariant domain®

D=Dp®Dy.

Here, of course, €2p of Qo @Yo denotes the vacuum state vector of the DIRAC theory
and Q¢gp the vacuum state vector of the GUPTA-BLEULER formalism (also denoted
by € in 4.1.3). The new vacuum state vector is invariant under the representation

Ula,A) = Up(a, A) @V (a,A4)
of iSL(2,C) (compare 4.2.2), where Up(a, A) o Ug(a A) x Uo(a A) denotes the

representation of iSL(2, C) for the DIRAC theory and V(a, A) the representation of
Pl given in 4.1.3. It is unitary w.r.t. the indefinite inner product

def

(D1 | Do) = (@ [ 1@ 7 Py) . (4.155)

with 7 defined by (4.29).
The subset of D describing physical states is

DF={<1>eD 0, AL (o )cbzo}

Draft, March 26, 2009

64Here ® denotes the algebraic tensor product whereas in (4.154), of course, the topological
tensor product of HILBERT spaces has to be taken.
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(compare (4.33)). Elements of Dy describe the same physical state if their difference
is in

DOQZ{(I)GDFZ ((I)|(I)):O}
(compare (4.17)). For physical states the expectation values® of the quantized
free electromagnetic field

Fég(ﬁ) = 8“12163@) - 8"21‘(‘;]3(@
(compare (4.13)) fulfill the free MAXWELL equations
9, (@ | F (2) <1>) —0 Vo€ Dp.

(compare final remark of 4.1.3) although the current density (4.27) of the free DIRAC
field does not vanish on Dp. This means that the free electromagnetic field
operators describe only the radiative part — not the field dragged along by
the asymptotic charged particles (and contributing to their physical mass).

The Hamiltonian of the FS is
Ho = P+ PSy (4.156)

with P3 resp. Py given by (4.147) resp. (4.48).

Formal Minimal Coupling

By (4.153) and (4.145), the commutation relations (4.27) imply the canonical com-
mutation relations

o) (o) | = -ig sx-x)

) A R (4.157)
[Atyl). Ao )] = | 2t (5o dtin) | =0,

These and the canonical anti-commutation relations (4.146) for the DIRAC field
(together with (4.27) and (4.137)) imply®® that a formal solution of the fundamental

differential equations

0 A*

. ‘def’ 770 o
lnt(x) = Lﬁt(l‘) = eZHxO ]56(07 X) € it )

. . (4.158)
(iv“ <0u — e gWAijnt(x)> - m> Uing(z) =0,
of QED is given by
A def iHaO Ap —iHz0
Aflw) = e Agp(0,x) e, (4.159)

def 20 3 i ET 20
Uii(z) = 7 0(0,x) e 7
Draft, March 26, 2009
65Recall that expectation values are given via (.| .), in the GUPTA-BLEULER formalism

66Recall Section 3.1.2
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with K R R A
H = Py + PSs + Hin (4.160)

where

A

mm:/QWj;mmp%ga@mk. (4.161)

Remark: Here, e is the modulus of the electron charge in HEAVISIDE units (see
Appendix A.3.4 von (Liicke. edyn)). Note that the definition of jiy(z) is only a
formal one. 74 (z) was defined in (4.140), but now * has to be replaced by . of
course. The transition from (4.138)/(4.9) to (4.158) is called minimal coupling .

Exercise 77 Show that
[4(0.5), 8(0,%)| = e dlx = x) 1" ¥(0, ).

By (4.156), the operator (3.9) is

Fi(a®) = / G 15 (2) At () dx,

i.e. we have to set®”

Sy (x) = i€ g U(2) 709 0 (1) A% () - (4.162)

in (3.26) (and let g — 1) if the time ordering is suitably defined.

Transition Probabilities

If the actual state of the IS looks for £ — —oc like the state of the F'S described by
® then the probability for a positive outcome of an ideal test whether the IS is in a
state looking for ¢ — +oo like the state of the F'S described by @’ is the transition
probability

def

m@ﬁ¢3:<@m%@f (4.163)

(recall Section 2.3.1). In practice one is only interested in states ®, @’ of the form

/ékl(pl)TékN(pN)Tgo(pb7pN>dp1deQ> 2 € S(RBN) )

where the ¢,(p) are suitable creation operators. Then the essential task is to
calculate the scattering amplitudes

() e ) 2] (S = 1) e (pU) - ey ()T Q) (4.164)

Draft, March 26, 2009

67Note that, by Lemma 4.1.3,

d € Dyy = /S’l(sc) g(z)dz @ € Doo"

holds for all g € S(R?).
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4.3.2 General Perturbation Theory

Generalization of WicK’s Theorem

To every type of field appearing in S (z) and its adjoint (if not identical to the field
itself) one assign a characteristic type of line; e.g. wavy lines for photons, simple
lines with upward orientation for electrons etc.

The transition matriz
So—1= Z/T(S’l(xl) . Sl(xn)) day - - dzy, (4.165)
n=1

(compare (3.26)) is evaluated by first writing the expressions

T (5*1(3;1) S S1<xn)> QT (Sl(ml) S Sl(xn)> Q>

as linear combinations of normally ordered products. This involves so-called #n-
ternal contractions of pairs of field operators appearing in Sy(z1) - - - Sy(z,) and
depending on different variables x,. These contractions will be characterized by
joining typical lines attached the operators to be contracted. For instance, the

(dashed) line in

means internal contraction of the pair of field operators ®; (1), @, (x,) (corre-
sponding to the line type), i.e. this pair has to be replaced by its propagator®

(2|7 (@5 (20)br, (2a))2)
If &, (1) and Py, (z,) are both FERMI fields with an odd number of FERMI fields

in between, a factor -1 has to be applied in addition. Here the time ordering T is
defined as the least singular covariant operation fulfilling the condition

(o) (@) “ {émé%x') for 20 > 20,

o®'(2')(x) for 20 < 2,
def [ —1 if both ® and &’ are FERMI fields,
+1 else.

(4.166)

where: o

Draft, March 26, 2009
68 The definition of the propagators implies that only contractions of pairs with fitting line types
can be different from zero.
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For simplicity we assume that S;(z) , which should be a BOSE field,% is a mono-
mial™ of field gperators. Then que may prove’ X
= :Slgxl)"'slgxn): . .
+:Sl($1)"'S1( ]) ...... Sl( k)...51($n>:

+ all other 2-fold contractions

R gl(ﬁ%)...gl(@) e gl(gﬂh) ...... :

+ all other incomplete multiple contractions.
for pairwise different 29 by straightforward generalization of the techniques used in
Section 3.2.1.
Let K(ml, ..., x,) be any of the incompletely contracted :5’1(:1:1) _ Sl(xn) -terms
(maybe : Sy (1) - - - Sy (2,) : itself) and assume that products of propagators are suit-
ably defined, if necessary.”™ Then its contribution to (4.164) is evaluated by rewriting

Cin (D) -+ Gy (D) K (21, 20) €} (p1) -+ ¢l (pw) (4.167)

as the K(xy,...,2,;P1,...,PN; P, - -, Pyv)-fold of 1 plus some linear combina-
tion of normally ordered field products. Then, by (4.165), the contribution of

A~

K(x1,...,2,) to (4.164) is given by
1
E/K(J}la'"7xn;p1)"'7pN;p,17"'7p/N’>dm1"’dxn7

where, by straightforward generalization of Wick’s theorem,

K(xl,...,xn;pl,...,pN;P’l,...,p’N/)

= G (Ph) -Gy (PY) T K (e (20): ¢}, (P1) -+, (Pw) (4.168)
| e L | -

+ all other complete external contractions.

External contractions are those involving at least one of the operators ¢, (p)' or
¢;(p’) and for which the corresponding 2-point function (without time-ordering) is
used instead of the propagator.

Draft, March 26, 2009
89Note that the time ordering of the Sj(x,)-factors used in (3.26) resp. (4.165) was that for
BoOsE fields.
70The necessary modifications for polynomials are obvious.
"L As in 3.2.1, all field operators have to be formally considered as different in the contraction

schemes. Recall <Q | So Q> =(Q]Q).

72 Actually, as discussed in Section 3.2.2 for the A®*-theory, physically correct definition of these
products is the task of renormalization theory.
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FEYNMAN Diagrams with External Momenta

The nontrivial terms contribution to (4.168) can be represented by FEYNMAN dia-
grams G of the following type:

1.

G consists vertices (corresponding to the variables x,) numbered 1,..., Vg > 0
and lines representing internal or external contractions, the free ends of the
latter being provided with a unique characterization of the operator (¢ (p)!
or ¢;(p’)) to be contracted.

Every vertex is connected with a family of contraction lines corresponding to
the family of field factors building S;(z) .

Every line representing an internal contraction forms a direct link between two
vertices.

. Every line representing an external contraction has at least one free end.

. A free end of a line representing an external contraction has to be the lowest

point of this line if it corresponds to a creations operator.

. A free end of a line representing an external contraction has to be the highest

point of this line if it corresponds to an annihilation operator.

As demonstrated in 3.2.3 for the A@“—theory one can show that the terms in
(4.168) corresponding to diagrams with vacuum subdiagrams may be skipped.

The admitted diagrams are heuristically interpreted as follows:

Every lower end of an exterior line represents an incoming particle correspond-
ing to the attached information.

Every higher end of an exterior line represents an outgoing particle correspond-
ing to the attached information.

Every internal line represent a virtual particle corresponding to the line type.

Every vertex represents an event where the particles corresponding to the con-
nected lines interact with each other being annihilated or created respectively.

The four diagrams of QED sketched in Figure 4.1, e.g., describe scattering of two
electrons with incoming momenta p1, p2 and outgoing momenta p’, ps.

Similarly, the four diagrams of Figure 4.2 describe scattering of an electron hav-
ing initial momentum p; and final momentum p’ with a positron having initial
momentum py and final momentum py .

Draft, March 26, 2009

73 Actually, the spin states should also be indicated at the ends of the external lines.
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P2

P2

Figure 4.1: M@LLER scattering”™

Figure 4.2: BHABBA scattering
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V() U(xy)
Figure 4.3: A typical™ vertex of QED

jo— ek = <Q|T((@(xj)) (@(zk)w)lk) Q>

rj
(Y qu +m)r;1 (.
lef (2 4 1i d itk —iq(xj—wxy)
+i(27) o a q> —m? + ie ‘

j
g, +m)e
o _i2m) 7 lim dq(7 < ).’“” e~ ta(mr=es)
=140 g% —m? + ie

P S <Q|T(<\i/(mj)T70>l (xp@@)) Q>

je~ o~k = <Q | T(AM (xjwk(xk)) Q>

def ik ; -4 1; dk +ik(z;—ar)
o o e

Figure 4.4: Internal Lines™ of QED (j < k)

4.3.3 The FEYNMAN Rules of QED

In QED, i.e. if Si(x) is given by (4.162), every vertex is connected with exactly

three lines:™ a wavy photon line corresponding to Agg, an incoming solid fermion

line corresponding to ¥, and an outgoing solid fermion line corresponding to U =
\i/WU . This is sketched in Figure 4.3.

The propagators corresponding to internal lines connecting the indices j and
k > j are those given by Figure 4.4. If one is interested only in linearly po-
larized asymptotic ‘particles’ then the ¢;(p) used in (4.164) are DIRAC operators

Draft, March 26, 2009
™ Actually, since S;(x) is a sum of monomials (recall Footnote 70) should be considered as a
family of lines with indices to be summed over according to the FEYNMAN rules formulated below.
"The orientation is relevant only for external lines.
"Die notation rj,l; for the indices is to indicate the original position (left/right) of the con-
tracted field operators relative to each other. For the definition of the bosonic propagator recall
(3.28)/(3.30) and (4.26). For the fermionic propagator recall (4.137).
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~ ~

bs(P), ds(p) (compare (4.2.4)) or transversal photon operators’”
3
~ def ~d
a(p) < e(p)- > _e;dl(p)
j=1

with
€’(p) =0, e(p) = €(p)”, le(p)| =1, p-e(p) = 0. (4.169)

Then the 2-point functions corresponding to external lines are those of Figure 4.5.

Asin 3.2.3, any two diagrams (7, (G5 are considered as equal if they differ only
by their diagramatical realization resp. are called equivalent (G7 = Gs) if they
differ only by the distribution of their vertex indices.

If all integrals over internal momenta exist™ (absence of ultraviolet divergences)
then Ag can be evaluated by the following naive FEYNMAN rules of QED:

1. Assign suitable momenta to every line of G and then replace it by a corre-
sponding factor:

(Vg +m)

|rlv
_‘2 —4 ]{:— 3 1~ k'j = .
Z( 7T> 6( j)e_l)r_{lo q2 _mg +Z€ k.—<—.q _q J

I

1
—g"i 5(270)74 lim
gt i(2m) = lim o

J O ek

k —k

I

(2m) 2" (K)

§‘
3
DN
b
w}w
—~
&
N I
T
et
2
[=]
~
I

etc.

2. For j =1,..., Vg replace vertex j by the factor™
—te (Wj)l]-rj (2m)"5(P)

where
p def { sum of all 4-momenta® assigned to line ends

connected with vertex j .

Draft, March 26, 2009
""Here e; and a’ (p) are to be understood in the sense of (4.57).

"8This is the case if G is a so-called tree diagram, i.e. if it does not contain closed loops.
™The §-function results from integration over xy, ..., zy, .
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K ¢ R . N Ao

)| 2 @laaie,))

j = (27T)_%€/Mj (p/) 6+ik/xj|k10:‘k/|
k?f = (0 Am ()] (0092)

€ = (27) " 2¢"i (p) efikxj\k,o:,k‘
pl o= (@b @) (V)'°) 2)

j — \om (2#)_% (wl(j)(p/)*,yo>l €+ip/zj|p/0:w /

IJ = (@ () (o))
plo = V2m (27) "2 (wé”(p)) e L
p’id' = (@dyp) () 0)

J =2m (2#)*% (wc(,/_)(—p’)> €+ip/xj\p/o:w ,

.T,J = (Q (xif(xj)wo lcii(p)ﬂ>
plo = V2m (27) "2 (wg‘)(—pﬁ“)l e o
k' ¢
Ko = (Q1a00)aK)0) = 20K € K) - (k) o(k ~ K)
p o R )
oo 2 QU0 (p)12) = 2y 8omi(p — )
p o . )
oo 2 () (p)I2) = 2 brb(p — )

Figure 4.5: External lines of QED
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3. Take the product of all factors and sum over all indices 7}, [;, ;t; and integrate
over all momenta assigned to internal lines (only one integration per internal
line).

4. Finally multiply by og € {41, —1} to be determined as follows:

Write down the corresponding contraction scheme, e.g.

Ci (D) &5y (DY) S (1) - S (ave) e, (p1) -+~ (pw) |
| e I |

and rearrange the operators such that all contracted pairs become direct neigh-
bors without changing the relative order of the operators forming any such pair.
Then o¢ is the signum of the overall permutation resulting this way.

4.3.4 Example: COMPTON Scattering

For COMPTON scattering, i.e. for electron-photon scattering in second order®
of perturbation theory, only graphs equivalent to

P, 0 k76

are relevant. The factors corresponding to the graph

Draft, March 26, 2009
80Here, the 3-momenta assigned to external lines have to lifted to the mass shell of the asymptotic
‘particle’ type.
81This means that only contributions with Vi < 2 are considered.
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are the following:

Vam (27) 7 (w5 (p)

T1

(2m) =326t (k)
—ie (Y )y, (27)*0(p+ k= q)

—q (27T) 4 lim (7 qv +m)r2l1
e—+0 g2 —m? + i€

—ie (Vua)y,,, (2m)0(q — ' — K'),
(271') —3/26m2 (k’) ,
Vam (2m)72 (W (0)°)

The signum of the permutation mapping

Do (D)W (1) 10 (1) W (0) T (22 ()

onto
(U(nB0)) (¥() b(22)) (b (0) ¥ (22)")
is g, = —1. Therefore
A _m_€2 . _/_/(-i-)/*Oé//
Agy = o lim [ 0(p+k—q)d(g—p — K)w, " (p) €k -
17T4 e—+40 d
+m
7 Ak)w{(p)dg
2 Zﬁ—l—g—fm
_ me oy, () x 0 K
53 0+ k=0 — KW (0) é( )5 (0 ),
where we use the usual conventions
dﬁf’y Ty, o Yp,  ete.
Similarly we get
" me? P—Fi+m
A = S ko — (,) Nx_ 0 é/ (+)
G2 = 5g 00+ k=1 = Kw, (p)" ék)—— —-— oy I (k)w;"(p)

for




4.3. THE S-MATRIX OF QUANTUM ELECTRODYNAMICS (QED) 187

and hence
(b (e ()2 | (S0 —1) ba(p)lac(0')
= o+ k1 — Rl (T K () where a0
rip k) 0 (a0 P g g PR )

The cross section for unpolarized incoming and outcoming electrons® is

o(p, ke €)

A ~ ~ N 2
K2 (S-1) b))

8p Sy -k Ualzi/ S(p+k —p—k) X (4.171)
dk’ dp’

2470 2p/0

xo(p'+k —p—k)

where p resp. k is the momentum of the incoming electron resp. photon and € resp. €’
is the polarization of the incoming resp. outgoing photon. Note that all 4-momenta
have to be on the corresponding mass shell:

=k, K=K, P=wp=vP2tm?, p =wy.
In order to evaluate (4.171) we have to calculate

2 dp’ dK’

def o
O + K —p—Fk) 5~ 2w 2K/|

L(p, k. k)i (p)

(4.172)

o,0'=+
By p=0and (k) = (k') = 0, (4.108) gives
+

(P+m) {9 (p)=— Op)( P-m)wP(p)=0.
With

this implies
~ 2 ~ ~
WTw*| = (w'*Fw) (w*Fw’) )

In the standard representation (4.115) the latter together with

> (@), (@ (p)°), = ( mm) | (4.173)

= 2m

Draft, March 26, 2009

82This means summation of the polarizations of the outgoing electron and averaging over the
the polarizations of the incoming electron. Therefore, we need an additional factor % compared to
the formula of Exercise 53.
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implies
—/dpl Ak b~ p— k)T (20 P, e K Pam
- QWP’ 2 |k,| p p r 7 p7 ) 2m )
where oo (400 AN 9 b
T(p,k, k') = 4.174
b,k K) = < 2km 2|k’|m ) (4.174)
and hence
. ) kLK) LK) FAK)
L(p, k,k')* =17° 4.175
by =7 (g 4 AT ) (4.175)
(because of v = —y* and 7% = 7%%).
In the laboratory system, i.e. for
p=0, p’=m,
the conditions
p/—l—k/:p—i—k, p'2:m2, ]{/’,2:0
are well known to imply the so-called COMPTON condition
k o kK
0 _ K| = [k cosy 2 £ (4.176)

k ’ !
—i—u(l—cosﬁ) k| K
m

Therefore p’ and k' are uniquely fixed, in the laboratory system, by k and the
direction of k’. Hence, there is a function f(|k|, (9, ¢)) with

P+ m) ‘

2m

PR (9, 0)) = Tv (v%(p, kK (4.177)

(9, ¢) are polar angles of k' (with ¢ = 0 for k || k’). For p = 0, therefore,
K'|"d|k'| dw
- [ [ 06T e+ —p = s 0.

= dwd|K| ‘kle(p + KO — K0 (p+ &k — K)? —m?) f(k, 9, )
P +k° /

_ /dw/ dIK| |£2|(5(2m\k| K] (2m 4 2[K] (1 — cos))) £k, D, )
0

(upper boundary redundant due to (4.176))

s mk]
B /d Tom T k(1 —cos )2 B0 )-

By (4.176), this implies

ar - K
dQ ~ 4m K|

F(k, 0, ). (4.178)
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(4.177) and (4.172)/(4.175), on the other hand, imply

flk,0,0) = Tr( ’ +m< ) KAk k) K g/(k,/)) )

2m 2 k|m 2|k'|m
Zﬁ—i— m ( g(k) | %l é/(k/) . é/(k/)‘ ]é|/ g(k))) (4.179)
2m 2 |k|m 2 k'|m '

Calculation of this trace is easily done by computer algebra. In Section 17.7 of the
REDUCE®® manual there is already a listing of the corresponding program:

ON DIV;
MASS K= 0, KP= 0, P= MC, PP= MC; VECTOR EP,E;
MSHELL X,KP,P,PP;
LET P.EP= 0, P.E= 0, P.PP= MC**2+K.KP, P.K= MC*NK,P.KP=
MC*NKP, PP.EP= -KP.EP, PP.E= K.E, PP.K= MC*NKP, PP.KP=
MC*NK, K.EP= 0, K.KP= MC*(NK-NKP), KP.E= 0, EP.EP= -1, E.E=-1;
(G(L,PP) + MC)/(2#MC)*(G(L,E,EP,K)/(2*K.P) + G(L,EP,E,KP)/(2*KP.P))

* (G(L,P) + MC)/(2*MC)*(G(L,K,EP,E)/(2*K.P) + G(L,KP,E,EP)/(2%KP.P))$
WRITE "1/4 Trace = ",WS;

This gives the following result for (4.179):
1/4 Trace = MC(2) % (1/2+«EP.E? + 1/8+NKP+«NK(—1) 4+ 1/8«NKP(~D«NK - 1/4)

The explicit meaning of this REDUCE message is:

1 L (1 K| 1k 1

- k? 19 — 2 (] 2 il e} i i B ]

Since we use natural units this, together with (4.178), proves the so-called KLEIN-
NISHINA formula:

d / _1 2 |k,| ? ‘k,‘ |k‘ 11,/ 2
ot he =007 () (Tl g = 2 aceae - an?)

def . .
where: 1o = classical radius of the electron
2

e ) o
= 7 in natural units in the HEAVISIDE system
™

2,82...-10Bcm.

o~

Draft, March 26, 2009

83For MATHEMATICA the package TRACER by M. JAMIN and M.E. LAUTENBACHER
(Jamin and Lautenbacher, 1993) is useful in this context.
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